[go: up one dir, main page]

Skip to main content

Ensemble of Prior-guided Expert Graph Models for Survival Prediction in Digital Pathology

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15005))

  • 1475 Accesses

Abstract

Survival prediction in pathology is a dynamic research field focused on identifying predictive biomarkers to enhance cancer survival models, providing valuable guidance for clinicians in treatment decisions. Graph-based methods, especially Graph Neural Networks (GNNs) leveraging rich interactions among different biological entities, have recently successfully predicted survival. However, the inherent heterogeneity among the entities within tissue slides significantly challenges the learning of GNNs. GNNs, operating with the homophily assumption, diffuse the intricate interactions among heterogeneous tissue entities in a tissue microenvironment. Further, the convoluted downstream task relevant information is not effectively exploited by graph-based methods when working with large slide-graphs. We propose a novel prior-guided, edge-attributed tissue-graph construction to address these challenges, followed by an ensemble of expert graph-attention survival models. Our method exploits diverse prognostic factors within numerous targeted tissue subgraphs of heterogeneous large slide-graphs. Our method achieves state-of-the-art results on four cancer types, improving overall survival prediction by 4.33% compared to the competing methods. Our code is publically available on https://github.com/Vishwesh4/DGNN.

V. Ramanathan and P. Pati—Equal contributions.

P. Pati—Independent Researcher.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Data - grand challenge. https://tiger.grand-challenge.org/Data/, (Accessed on 02/29/2024)

  2. Diagnijmegen/pathology-tiger-baseline. https://github.com/DIAGNijmegen/pathology-tiger-baseline, (Accessed on 02/29/2024)

  3. Beck, A.H., Sangoi, A.R., Leung, S., Marinelli, R.J., Nielsen, T.O., Van De Vijver, M.J., West, R.B., Van De Rijn, M., Koller, D.: Systematic analysis of breast cancer morphology uncovers stromal features associated with survival. Science translational medicine 3(108), 108ra113–108ra113 (2011)

    Google Scholar 

  4. Brody, S., Alon, U., Yahav, E.: How attentive are graph attention networks? arXiv preprint arXiv:2105.14491 (2021)

  5. Cai, Y., Wang, Y.: Ma-unet: An improved version of unet based on multi-scale and attention mechanism for medical image segmentation. In: International Conference on Electronics and Communication; Network and Computer Technology. vol. 12167, pp. 205–211. SPIE (2022)

    Google Scholar 

  6. Chen, R.J., Lu, M.Y., Shaban, M., Chen, C., Chen, T.Y., Williamson, D.F., Mahmood, F.: Whole slide images are 2d point clouds: Context-aware survival prediction using patch-based graph convolutional networks. In: MICCAI. pp. 339–349. Springer (2021)

    Google Scholar 

  7. Dwivedi, V.P., Luu, A.T., Laurent, T., Bengio, Y., Bresson, X.: Graph neural networks with learnable structural and positional representations. arXiv preprint arXiv:2110.07875 (2021)

  8. Fuchs, T.J., Buhmann, J.M.: Computational pathology: challenges and promises for tissue analysis. Computerized Medical Imaging and Graphics 35(7-8), 515–530 (2011)

    Article  Google Scholar 

  9. Hamilton, W.: Graph representation learning. Synthesis Lectures on Artificial Intelligence and Machine Learning 14, 1–159 (09 2020)

    Google Scholar 

  10. Huang, Z., Chai, H., Wang, R., Wang, H., Yang, Y., Wu, H.: Integration of patch features through self-supervised learning and transformer for survival analysis on whole slide images. In: MICCAI. pp. 561–570. Springer (2021)

    Google Scholar 

  11. Ilse, M., Tomczak, J., Welling, M.: Attention-based deep multiple instance learning. In: International conference on machine learning. pp. 2127–2136 (2018)

    Google Scholar 

  12. Lee, Y., Park, J.H., Oh, S., Shin, K., Sun, J., Jung, M., Lee, C., Kim, H., Chung, J.H., Moon, K.C., et al.: Derivation of prognostic contextual histopathological features from whole-slide images of tumours via graph deep learning. Nature Biomedical Engineering pp. 1–15 (2022)

    Google Scholar 

  13. Li, R., Yao, J., Zhu, X., Li, Y., Huang, J.: Graph cnn for survival analysis on whole slide pathological images. In: MICCAI. pp. 174–182. Springer (2018)

    Google Scholar 

  14. Liu, P., Ji, L., Ye, F., Fu, B.: Graphlsurv: A scalable survival prediction network with adaptive and sparse structure learning for histopathological whole-slide images. Computer Methods and Programs in Biomedicine 231, 107433 (2023)

    Article  Google Scholar 

  15. Love, M.I., Huber, W., Anders, S.: Moderated estimation of fold change and dispersion for rna-seq data with deseq2. Genome biology 15(12), 1–21 (2014)

    Article  Google Scholar 

  16. Newman, M.E.: The structure and function of complex networks. SIAM review 45(2), 167–256 (2003)

    Article  MathSciNet  Google Scholar 

  17. Pietras, K., Östman, A.: Hallmarks of cancer: interactions with the tumor stroma. Experimental cell research 316(8), 1324–1331 (2010)

    Article  Google Scholar 

  18. Rampášek, L., Galkin, M., Dwivedi, V.P., Luu, A.T., Wolf, G., Beaini, D.: Recipe for a general, powerful, scalable graph transformer. Advances in Neural Information Processing Systems 35, 14501–14515 (2022)

    Google Scholar 

  19. Salgado, R., Denkert, C., Demaria, S., Sirtaine, N., Klauschen, F., Pruneri, G., Wienert, S., Van den Eynden, G., Baehner, F.L., Pénault-Llorca, F., et al.: The evaluation of tumor-infiltrating lymphocytes (tils) in breast cancer: recommendations by an international tils working group 2014. Annals of oncology 26(2), 259–271 (2015)

    Article  Google Scholar 

  20. Shao, Z., Bian, H., Chen, Y., Wang, Y., Zhang, J., Ji, X., et al.: Transmil: Transformer based correlated multiple instance learning for whole slide image classification. Advances in neural information processing systems 34, 2136–2147 (2021)

    Google Scholar 

  21. Shao, Z., Chen, Y., Bian, H., Zhang, J., Liu, G., Zhang, Y.: Hvtsurv: Hierarchical vision transformer for patient-level survival prediction from whole slide image. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 37, pp. 2209–2217 (2023)

    Google Scholar 

  22. Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., et al.: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences 102(43), 15545–15550 (2005)

    Article  Google Scholar 

  23. Tomczak, K., Czerwińska, P., Wiznerowicz, M.: Review the cancer genome atlas (tcga): an immeasurable source of knowledge. Contemporary Oncology/Współczesna Onkologia 2015(1), 68–77 (2015)

    Article  Google Scholar 

  24. Wang, X., Yang, S., Zhang, J., Wang, M., Zhang, J., Yang, W., Huang, J., Han, X.: Transformer-based unsupervised contrastive learning for histopathological image classification. Medical image analysis 81, 102559 (2022)

    Article  Google Scholar 

  25. Wang, Z., Li, J., Pan, Z., Li, W., Sisk, A., Ye, H., Speier, W., Arnold, C.W.: Hierarchical graph pathomic network for progression free survival prediction. In: MICCAI. pp. 227–237 (2021)

    Google Scholar 

  26. Xiong, Y., Zeng, Z., Chakraborty, R., Tan, M., Fung, G., Li, Y., Singh, V.: Nyströmformer: A nyström-based algorithm for approximating self-attention. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 35, pp. 14138–14148 (2021)

    Google Scholar 

  27. Yao, J., Zhu, X., Jonnagaddala, J., Hawkins, N., Huang, J.: Whole slide images based cancer survival prediction using attention guided deep multiple instance learning networks. Medical Image Analysis 65, 101789 (2020)

    Article  Google Scholar 

  28. Zadeh, S.G., Schmid, M.: Bias in cross-entropy-based training of deep survival networks. IEEE transactions on pattern analysis and machine intelligence 43(9), 3126–3137 (2020)

    Article  Google Scholar 

  29. Zhao, L., Hou, R., Teng, H., Fu, X., Han, Y., Zhao, J.: Coads: Cross attention based dual-space graph network for survival prediction of lung cancer using whole slide images. Computer Methods and Programs in Biomedicine 236, 107559 (2023)

    Article  Google Scholar 

  30. Zheng, Y., Gindra, R.H., Green, E.J., Burks, E.J., Betke, M., Beane, J.E., Kolachalama, V.B.: A graph-transformer for whole slide image classification. IEEE transactions on medical imaging 41(11), 3003–3015 (2022)

    Article  Google Scholar 

  31. Zhu, X., Yao, J., Zhu, F., Huang, J.: Wsisa: Making survival prediction from whole slide histopathological images. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 7234–7242 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishwesh Ramanathan .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1268 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ramanathan, V., Pati, P., McNeil, M., Martel, A.L. (2024). Ensemble of Prior-guided Expert Graph Models for Survival Prediction in Digital Pathology. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15005. Springer, Cham. https://doi.org/10.1007/978-3-031-72086-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72086-4_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72085-7

  • Online ISBN: 978-3-031-72086-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics