[go: up one dir, main page]

Skip to main content

Anonymity on Byzantine-Resilient Decentralized Computing

  • Conference paper
  • First Online:
Wireless Artificial Intelligent Computing Systems and Applications (WASA 2024)

Abstract

In recent years, decentralized computing has gained popularity in various domains such as decentralized learning, financial services and the Industrial Internet of Things. As identity privacy becomes increasingly important in the era of big data, safeguarding user identity privacy while ensuring the security of decentralized computing systems has become a critical challenge. To address this issue, we propose ADC (Anonymous Decentralized Computing) to achieve anonymity in decentralized computing. In ADC, the entire network of users can vote to trace and revoke malicious nodes. Furthermore, ADC possesses excellent Sybil-resistance and Byzantine fault tolerance, enhancing the security of the system and increasing user trust in the decentralized computing system. To decentralize the system, we propose a practical blockchain-based decentralized group signature scheme called Group Contract. We construct the entire decentralized system based on Group Contract, which does not require the participation of a trusted authority to guarantee the above functions. Finally, we conduct rigorous privacy and security analysis and performance evaluation to demonstrate the security and practicality of ADC for decentralized computing with only a minor additional time overhead.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Available: https://github.com/isSPDL/SPDL.

  2. 2.

    Available: http://remix.ethereum.org,.

  3. 3.

    Available: https://docs.soliditylang.org/en/v0.8.20/.

References

  1. Lian, X., Zhang, C., Zhang, H., Hsieh, C. J., Zhang, W., Liu, J.: Can decentralized algorithms outperform centralized algorithms? a case study for decentralized parallel stochastic gradient descent. Advances in neural information processing systems, 30 (2017)

    Google Scholar 

  2. Mouton, F., Leenen, L., Venter, H.S.: Social engineering attack examples, templates and scenarios. Comput. Secur. 59, 186–209 (2016)

    Article  Google Scholar 

  3. Chen, X., Ji, J., Luo, C., Liao, W., Li, P.: When machine learning meets blockchain: a decentralized, privacy-preserving and secure design. In: 2018 IEEE International Conference on Big Data (Big Data), pp. 1178-1187. IEEE, December 2018

    Google Scholar 

  4. Minghui, X., Zou, Z., Cheng, Y., Qin, H., Dongxiao, Yu., Cheng, X.: SPDL: a blockchain-enabled secure and privacy-preserving decentralized learning system. IEEE Trans. Comput. 72(2), 548–558 (2023)

    Article  Google Scholar 

  5. Douceur, J.R.: The sybil attack. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45748-8_24

    Chapter  Google Scholar 

  6. Fan, M., Zhang, Z., Li, Z., Sun, G., Yu, H., Guizani, M.: Blockchain-based decentralized and lightweight anonymous authentication for federated learning. IEEE Trans. Vehicular Technol. (2023)

    Google Scholar 

  7. Shayan, M., Fung, C., Yoon, C.J., Beschastnikh, I.: Biscotti: a blockchain system for private and secure federated learning. IEEE Trans. Parallel Distrib. Syst. 32(7), 1513–1525 (2020)

    Article  Google Scholar 

  8. Liu, C., et al.: TBAC: a tokoin-based accountable access control scheme for the Internet of Things. IEEE Trans. Mob. Comput., 1–16 (2023)

    Google Scholar 

  9. Liu, C., et al.: Extending on-chain trust to off-chain - trustworthy blockchain data collection using trusted execution environment (TEE). IEEE Trans. Comput. 71(12), 3268–3280 (2022)

    Google Scholar 

  10. Fan, C.-I., Hsu, R.-H., Manulis, M.: Group signature with constant revocation costs for signers and verifiers. In: Lin, D., Tsudik, G., Wang, X. (eds.) CANS 2011. LNCS, vol. 7092, pp. 214–233. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25513-7_16

  11. Yuan, R., Xia, Y.B., Chen, H.B., Zang, B.Y., Xie, J.: Shadoweth: private smart contract on public blockchain. J. Comput. Sci. Technol. 33, 542–556 (2018)

    Article  Google Scholar 

  12. Qi, H., Xu, M., Yu, D., Cheng, X.: SoK: privacy-preserving smart contract. High-Confidence Computing 4(1), 100183 (2024). https://doi.org/10.1016/j.hcc.2023.100183

  13. Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: OsDI, vol. 99, No. 1999, pp. 173–186, February 1999

    Google Scholar 

  14. Qu, Y., et al.: Decentralized privacy using blockchain-enabled federated learning in fog computing. IEEE Internet Things J. 7(6), 5171–5183 (2020)

    Article  Google Scholar 

  15. Lu, Y., Huang, X., Dai, Y., Maharjan, S., Zhang, Y.: Blockchain and federated learning for privacy-preserved data sharing in industrial IoT. IEEE Trans. Industr. Inf. 16(6), 4177–4186 (2019)

    Article  Google Scholar 

  16. Xu, C., Qu, Y., Eklund, P. W., Xiang, Y., Gao, L.: Bafl: an efficient blockchain-based asynchronous federated learning framework. In: 2021 IEEE Symposium on Computers and Communications (ISCC), pp. 1–6. IEEE, September 2021

    Google Scholar 

  17. Zhang, C., Xie, Y., Bai, H., Yu, B., Li, W., Gao, Y.: A survey on federated learning. Knowl.-Based Syst. 216, 106775 (2021)

    Article  Google Scholar 

  18. Hasırcıoğlu, B., Gündüz, D.: Private wireless federated learning with anonymous over-the-air computation. In: ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5195–5199. IEEE, June 2021

    Google Scholar 

  19. Zhao, B., Fan, K., Yang, K., Wang, Z., Li, H., Yang, Y.: Anonymous and privacy-preserving federated learning with industrial big data. IEEE Trans. Industr. Inf. 17(9), 6314–6323 (2021)

    Article  Google Scholar 

  20. Jiang, Y., Zhang, K., Qian, Y., Zhou, L.: Anonymous and efficient authentication scheme for privacy-preserving distributed learning. IEEE Trans. Inf. Forensics Secur. 17, 2227–2240 (2022)

    Article  Google Scholar 

  21. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6_22

    Chapter  Google Scholar 

  22. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Annual International Cryptology Conference, pp. 41–55. Springer, Heidelberg. August 2004

    Google Scholar 

  23. Camenisch, J., Kohlweiss, M., Soriente, C.: An Accumulator Based on Bilinear Maps and Efficient Revocation for Anonymous Credentials. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 481–500. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00468-1_27

    Chapter  Google Scholar 

  24. Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algorithm (ECDSA). Int. J. Inf. Secur. 1, 36–63 (2001)

    Article  Google Scholar 

  25. Devidas, S., Rao YV, S., Rekha, N.R.: A decentralized group signature scheme for privacy protection in a blockchain. Int. J. Appl. Math. Comput. Sci. 31(2) (2021)

    Google Scholar 

  26. Devidas, S., Rukma Rekha, N., Subba Rao, Y.V.: Dynamic decentralized group signature scheme for privacy protection in blockchain. In: International Conference on Innovative Computing and Communications: Proceedings of ICICC 2022, vol. 3, pp. 745–760. Singapore: Springer Nature Singapore, November 2022

    Google Scholar 

  27. Cao, Y., Li, Y., Sun, Y., Wang, S.: Decentralized group signature scheme based on blockchain. In 2019 International Conference on Communications, Information System and Computer Engineering (CISCE), pp. 566–569. IEEE, July 2019

    Google Scholar 

  28. Zhao, X., Wang, L., Wang, L., Lu, Z.: A privacy-enhanced federated learning scheme with identity protection. In: 2022 IEEE 24th Int Conf on High Performance Computing & Communications; 8th Int Conf on Data Science & Systems; 20th Int Conf on Smart City; 8th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys), pp. 1188–1195. IEEE, December 2022

    Google Scholar 

Download references

Acknowledgement

This study was partially supported by the National Key R&D Program of China (No. 2022YFB4501000), the National Natural Science Foundation of China (No. 62232010, 62302266, U23A20302), Shandong Science Fund for Excellent Young Scholars (No. 2023HWYQ-008), and Shandong Science Fund for Key Fundamental Research Project (ZR2022ZD02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghui Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, K. et al. (2025). Anonymity on Byzantine-Resilient Decentralized Computing. In: Cai, Z., Takabi, D., Guo, S., Zou, Y. (eds) Wireless Artificial Intelligent Computing Systems and Applications. WASA 2024. Lecture Notes in Computer Science, vol 14998. Springer, Cham. https://doi.org/10.1007/978-3-031-71467-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71467-2_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71466-5

  • Online ISBN: 978-3-031-71467-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics