Abstract
In recent years, decentralized computing has gained popularity in various domains such as decentralized learning, financial services and the Industrial Internet of Things. As identity privacy becomes increasingly important in the era of big data, safeguarding user identity privacy while ensuring the security of decentralized computing systems has become a critical challenge. To address this issue, we propose ADC (Anonymous Decentralized Computing) to achieve anonymity in decentralized computing. In ADC, the entire network of users can vote to trace and revoke malicious nodes. Furthermore, ADC possesses excellent Sybil-resistance and Byzantine fault tolerance, enhancing the security of the system and increasing user trust in the decentralized computing system. To decentralize the system, we propose a practical blockchain-based decentralized group signature scheme called Group Contract. We construct the entire decentralized system based on Group Contract, which does not require the participation of a trusted authority to guarantee the above functions. Finally, we conduct rigorous privacy and security analysis and performance evaluation to demonstrate the security and practicality of ADC for decentralized computing with only a minor additional time overhead.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Available: https://github.com/isSPDL/SPDL.
- 2.
Available: http://remix.ethereum.org,.
- 3.
Available: https://docs.soliditylang.org/en/v0.8.20/.
References
Lian, X., Zhang, C., Zhang, H., Hsieh, C. J., Zhang, W., Liu, J.: Can decentralized algorithms outperform centralized algorithms? a case study for decentralized parallel stochastic gradient descent. Advances in neural information processing systems, 30 (2017)
Mouton, F., Leenen, L., Venter, H.S.: Social engineering attack examples, templates and scenarios. Comput. Secur. 59, 186–209 (2016)
Chen, X., Ji, J., Luo, C., Liao, W., Li, P.: When machine learning meets blockchain: a decentralized, privacy-preserving and secure design. In: 2018 IEEE International Conference on Big Data (Big Data), pp. 1178-1187. IEEE, December 2018
Minghui, X., Zou, Z., Cheng, Y., Qin, H., Dongxiao, Yu., Cheng, X.: SPDL: a blockchain-enabled secure and privacy-preserving decentralized learning system. IEEE Trans. Comput. 72(2), 548–558 (2023)
Douceur, J.R.: The sybil attack. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45748-8_24
Fan, M., Zhang, Z., Li, Z., Sun, G., Yu, H., Guizani, M.: Blockchain-based decentralized and lightweight anonymous authentication for federated learning. IEEE Trans. Vehicular Technol. (2023)
Shayan, M., Fung, C., Yoon, C.J., Beschastnikh, I.: Biscotti: a blockchain system for private and secure federated learning. IEEE Trans. Parallel Distrib. Syst. 32(7), 1513–1525 (2020)
Liu, C., et al.: TBAC: a tokoin-based accountable access control scheme for the Internet of Things. IEEE Trans. Mob. Comput., 1–16 (2023)
Liu, C., et al.: Extending on-chain trust to off-chain - trustworthy blockchain data collection using trusted execution environment (TEE). IEEE Trans. Comput. 71(12), 3268–3280 (2022)
Fan, C.-I., Hsu, R.-H., Manulis, M.: Group signature with constant revocation costs for signers and verifiers. In: Lin, D., Tsudik, G., Wang, X. (eds.) CANS 2011. LNCS, vol. 7092, pp. 214–233. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25513-7_16
Yuan, R., Xia, Y.B., Chen, H.B., Zang, B.Y., Xie, J.: Shadoweth: private smart contract on public blockchain. J. Comput. Sci. Technol. 33, 542–556 (2018)
Qi, H., Xu, M., Yu, D., Cheng, X.: SoK: privacy-preserving smart contract. High-Confidence Computing 4(1), 100183 (2024). https://doi.org/10.1016/j.hcc.2023.100183
Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: OsDI, vol. 99, No. 1999, pp. 173–186, February 1999
Qu, Y., et al.: Decentralized privacy using blockchain-enabled federated learning in fog computing. IEEE Internet Things J. 7(6), 5171–5183 (2020)
Lu, Y., Huang, X., Dai, Y., Maharjan, S., Zhang, Y.: Blockchain and federated learning for privacy-preserved data sharing in industrial IoT. IEEE Trans. Industr. Inf. 16(6), 4177–4186 (2019)
Xu, C., Qu, Y., Eklund, P. W., Xiang, Y., Gao, L.: Bafl: an efficient blockchain-based asynchronous federated learning framework. In: 2021 IEEE Symposium on Computers and Communications (ISCC), pp. 1–6. IEEE, September 2021
Zhang, C., Xie, Y., Bai, H., Yu, B., Li, W., Gao, Y.: A survey on federated learning. Knowl.-Based Syst. 216, 106775 (2021)
Hasırcıoğlu, B., Gündüz, D.: Private wireless federated learning with anonymous over-the-air computation. In: ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5195–5199. IEEE, June 2021
Zhao, B., Fan, K., Yang, K., Wang, Z., Li, H., Yang, Y.: Anonymous and privacy-preserving federated learning with industrial big data. IEEE Trans. Industr. Inf. 17(9), 6314–6323 (2021)
Jiang, Y., Zhang, K., Qian, Y., Zhou, L.: Anonymous and efficient authentication scheme for privacy-preserving distributed learning. IEEE Trans. Inf. Forensics Secur. 17, 2227–2240 (2022)
Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6_22
Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Annual International Cryptology Conference, pp. 41–55. Springer, Heidelberg. August 2004
Camenisch, J., Kohlweiss, M., Soriente, C.: An Accumulator Based on Bilinear Maps and Efficient Revocation for Anonymous Credentials. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 481–500. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00468-1_27
Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algorithm (ECDSA). Int. J. Inf. Secur. 1, 36–63 (2001)
Devidas, S., Rao YV, S., Rekha, N.R.: A decentralized group signature scheme for privacy protection in a blockchain. Int. J. Appl. Math. Comput. Sci. 31(2) (2021)
Devidas, S., Rukma Rekha, N., Subba Rao, Y.V.: Dynamic decentralized group signature scheme for privacy protection in blockchain. In: International Conference on Innovative Computing and Communications: Proceedings of ICICC 2022, vol. 3, pp. 745–760. Singapore: Springer Nature Singapore, November 2022
Cao, Y., Li, Y., Sun, Y., Wang, S.: Decentralized group signature scheme based on blockchain. In 2019 International Conference on Communications, Information System and Computer Engineering (CISCE), pp. 566–569. IEEE, July 2019
Zhao, X., Wang, L., Wang, L., Lu, Z.: A privacy-enhanced federated learning scheme with identity protection. In: 2022 IEEE 24th Int Conf on High Performance Computing & Communications; 8th Int Conf on Data Science & Systems; 20th Int Conf on Smart City; 8th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys), pp. 1188–1195. IEEE, December 2022
Acknowledgement
This study was partially supported by the National Key R&D Program of China (No. 2022YFB4501000), the National Natural Science Foundation of China (No. 62232010, 62302266, U23A20302), Shandong Science Fund for Excellent Young Scholars (No. 2023HWYQ-008), and Shandong Science Fund for Key Fundamental Research Project (ZR2022ZD02).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ma, K. et al. (2025). Anonymity on Byzantine-Resilient Decentralized Computing. In: Cai, Z., Takabi, D., Guo, S., Zou, Y. (eds) Wireless Artificial Intelligent Computing Systems and Applications. WASA 2024. Lecture Notes in Computer Science, vol 14998. Springer, Cham. https://doi.org/10.1007/978-3-031-71467-2_32
Download citation
DOI: https://doi.org/10.1007/978-3-031-71467-2_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-71466-5
Online ISBN: 978-3-031-71467-2
eBook Packages: Computer ScienceComputer Science (R0)