[go: up one dir, main page]

Skip to main content

MTA-Net: A Multi-task Assisted Network for Whole-Body Lymphoma Segmentation

  • Conference paper
  • First Online:
Artificial Intelligence Applications and Innovations (AIAI 2024)

Abstract

Lymphoma treatment planning and prognosis assessment require accurate segmentation of lymphoma lesions. Positron emission tomography (PET) /computed tomography (CT) is widely used for lymphoma segmentation. Many methods do automatic segmentation of lymphoma based on PET/CT. However, a significant challenge that limits the effectiveness of the segmentation method is the large and imbalance variation in size of whole-body lymphoma lesions. For example, a small percentage of images contain large lesions, while most images contain only small lesions or even no lesions, which results in inaccurate segmentation. In this paper, we propose a Multi-task Assisted Network (MTA-Net) for whole-body lymphoma segmentation. First, we design a novel Multi-task Cross-scale Transformer (MCT) block, which combines the pixels regression task and the whole image classification task at multiple scales. Second, we design a Classification Dynamic Convolution (CDC) whose parameters are additionally controlled by the classification task to assist the segmentation task. In our private whole-body lymphoma dataset, experiments show that MTA-Net achieves the best result among state-of-the-art methods on Dice, HD (Hausdorff Distance), Recall, and Precision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahamed, S., et al.: A cascaded deep network for automated tumor detection and segmentation in clinical pet imaging of diffuse large b-cell lymphoma. In: Medical Imaging 2022: Image Processing, vol. 12032, pp. 934–941. SPIE (2022)

    Google Scholar 

  2. Bi, L., Kim, J., Wen, L., Feng, D.D.: Automated and robust percist-based thresholding framework for whole body pet-ct studies. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5335–5338 (2012). https://doi.org/10.1109/EMBC.2012.6347199

  3. Chen, J., et al.: Transunet: transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)

  4. Chen, Y., Dai, X., Liu, M., Chen, D., Yuan, L., Liu, Z.: Dynamic convolution: attention over convolution kernels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11030–11039 (2020)

    Google Scholar 

  5. Desbordes, P., Petitjean, C., Ruan, S.: 3d automated lymphoma segmentation in pet images based on cellular automata. In: 2014 4th International Conference on Image Processing Theory, Tools and Applications (IPTA), pp. 1–6. IEEE (2014)

    Google Scholar 

  6. Ferlay, J., et al.: Global cancer observatory: cancer today. Lyon, France: international agency for research on cancer 3(20), 2019 (2018)

    Google Scholar 

  7. Hatamizadeh, A., Nath, V., Tang, Y., Yang, D., Roth, H.R., Xu, D.: Swin unetr: swin transformers for semantic segmentation of brain tumors in mri images. In: International MICCAI Brainlesion Workshop, pp. 272–284. Springer, Cham (2021). https://doi.org/10.1007/978-3-031-08999-2_22

  8. Heiliger, L., et al.: Autopet challenge: combining nn-unet with swin unetr augmented by maximum intensity projection classifier. arXiv preprint arXiv:2209.01112 (2022)

  9. Hu, H., Shen, L., Zhou, T., Decazes, P., Vera, P., Ruan, S.: Lymphoma segmentation in pet images based on multi-view and conv3d fusion strategy. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 1197–1200. IEEE (2020)

    Google Scholar 

  10. Huang, L., Ruan, S., Decazes, P., Denœux, T.: Lymphoma segmentation from 3d pet-ct images using a deep evidential network. Int. J. Approximate Reasoning 149, 39–60 (2022)

    Article  Google Scholar 

  11. Ji, Z., et al.: Continual segment: towards a single, unified and accessible continual segmentation model of 143 whole-body organs in ct scans. arXiv preprint arXiv:2302.00162 (2023)

  12. Kuker, R.A., et al.: A deep learning-aided automated method for calculating metabolic tumor volume in diffuse large b-cell lymphoma. Cancers 14(21), 5221 (2022)

    Article  Google Scholar 

  13. Li, H., et al.: Densex-net: an end-to-end model for lymphoma segmentation in whole-body pet/ct images. IEEE Access 8, 8004–8018 (2019)

    Article  Google Scholar 

  14. Marinov, Z., Reiß, S., Kersting, D., Kleesiek, J., Stiefelhagen, R.: Mirror u-net: marrying multimodal fission with multi-task learning for semantic segmentation in medical imaging. arXiv preprint arXiv:2303.07126 (2023)

  15. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, pp. 234–241. Springer (2015)

    Google Scholar 

  16. Tang, H., Liu, J., Zhao, M., Gong, X.: Progressive layered extraction (ple): a novel multi-task learning (mtl) model for personalized recommendations. In: Proceedings of the 14th ACM Conference on Recommender Systems, pp. 269–278 (2020)

    Google Scholar 

  17. Wang, M., Jiang, H., Shi, T., Wang, Z., Guo, J., Lu, G., Wang, Y., Yao, Y.D.: Psr-nets: deep neural networks with prior shift regularization for pet/ct based automatic, accurate, and calibrated whole-body lymphoma segmentation. Comput. Biol. Med. 151, 106215 (2022)

    Article  Google Scholar 

  18. Zhong, Z., Kim, Y., Plichta, K., Allen, B.G., Zhou, L., Buatti, J., Wu, X.: Simultaneous cosegmentation of tumors in pet-ct images using deep fully convolutional networks. Med. Phys. 46(2), 619–633 (2019)

    Article  Google Scholar 

  19. Zhong, Z., Kim, Y., Zhou, L., Plichta, K., Allen, B., Buatti, J., Wu, X.: 3d fully convolutional networks for co-segmentation of tumors on pet-ct images. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 228–231. IEEE (2018)

    Google Scholar 

  20. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested u-net architecture for medical image segmentation. In: Stoyanov, D., Taylor, Z., Carneiro, G., Syeda-Mahmood, T., Martel, A., Maier-Hein, L., Tavares, J.M.R.S., Bradley, A., Papa, J.P., Belagiannis, V., Nascimento, J.C., Lu, Z., Conjeti, S., Moradi, M., Greenspan, H., Madabhushi, A. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China under Grant 62088102 and Central Guidance on Local Science and Technology Development Fund 2022ZY1-CGZY-01HZ02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingmin Xin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liang, Z. et al. (2024). MTA-Net: A Multi-task Assisted Network for Whole-Body Lymphoma Segmentation. In: Maglogiannis, I., Iliadis, L., Macintyre, J., Avlonitis, M., Papaleonidas, A. (eds) Artificial Intelligence Applications and Innovations. AIAI 2024. IFIP Advances in Information and Communication Technology, vol 711. Springer, Cham. https://doi.org/10.1007/978-3-031-63211-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63211-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63210-5

  • Online ISBN: 978-3-031-63211-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics