Abstract
Suicide is a major health and social issue worldwide; therefore, a simple access to reliable sources of information that can be used by family members or friends of people who have suicidal ideation can be a valuable resource. This information can be provided by means of chatbot tools; however, the reliability and topicality of the chatbot’s answers should be ensured. In this work, we present an architecture to build a chatbot with the aim of providing reliable suicide information in Spanish. The architecture consists of two text classification models (one to check that a user’s question is related to suicidal content, and another to decide whether the user is looking for information or if the question should be derived to a human), and a retrieval augmented generation system that, using as a basis a corpus of documents filtered by experts, generates an answer to the user question. In addition, all the components of the architecture have been automatically tested to prove their suitability to be incorporated to the chatbot. The developed system is a step towards helping in one of the greatest global public health concerns.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
ChatGPT (2023). https://chat.openai.com
Mixtral, sparse mixture of experts (2023). https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
Suicide comments (2023). https://huggingface.co/datasets/hackathon-somos-nlp-2023/suicide-comments-es
Abd-Alrazaq, A.A., et al.: Perceptions and opinions of patients about mental health chatbots: scoping review. J. Med. Internet Res. 23(1), e17828 (2021)
Bertin Project: Bertin-GPT-J-6B alpaca (2023). https://huggingface.co/bertin-project/bertin-gpt-j-6B-alpaca
Burnap, P., Colombo, W., Scourfield, J.: Machine classification and analysis of suicide-related communication on twitter. In: Proceedings of the 26th ACM Conference on Hypertext & Social Media, pp. 75–84 (2015)
Cañete, J., Chaperon, G., Fuentes, R., Ho, J.H., Kang, H., Pérez, J.: Spanish pre-trained BERT model and evaluation data. In: PML4DC at ICLR 2020 (2020)
Clibrain: LINCE mistral 7B instruct (2023). https://huggingface.co/clibrain/lince-mistral-7b-it-es
Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. CoRR abs/1810.04805 (2018). http://arxiv.org/abs/1810.04805
Es, S., James, J., Espinosa-Anke, L., Schockaert, S.: RAGAs: automated evaluation of retrieval augmented generation. arXiv preprint arXiv:2309.15217 (2023)
Gobierno de Navarra: Prevención y actuación ante conductas suicidas (2014). https://www.educacion.navarra.es/documents/27590/548485/Suicidio.pdf/b5374981-511a-40ed-82c5-7c74bc23b049
Instituto Nacional de Estadística: Defunciones según la causa de muerte año 2022. Technical report (2023). https://www.ine.es/prensa/edcm_2022_d.pdf
Jiang, A.Q., et al.: Mixtral of experts. arXiv preprint arXiv:2401.04088 (2024)
Lewis, P., et al.: Retrieval-augmented generation for knowledge-intensive NLP tasks. Adv. Neural. Inf. Process. Syst. 33, 9459–9474 (2020)
Rebedea, T., Dinu, R., Sreedhar, M., Parisien, C., Cohen, J.: Nemo guardrails: a toolkit for controllable and safe LLM applications with programmable rails. arXiv preprint arXiv:2310.10501 (2023)
Rioja Salud: Plan de prevención del suicidio en La Rioja (2019). https://www.riojasalud.es/files/content/ciudadanos/planes-estrategicos/PLAN_PREVENCION_CONDUCTA_SUICIDA_DEF.pdf
Romero, M.: Spanish electra by manuel romero (2020). https://huggingface.co/mrm8488/electricidad-base-discriminator/
Savage, N.: The rise of the chatbots. Commun. ACM 66(7), 16–17 (2023)
Seah, J.H., Shim, K.J.: Data mining approach to the detection of suicide in social media: a case study of Singapore. In: 2018 IEEE International Conference on Big Data (big Data), pp. 5442–5444. IEEE (2018)
Servicio Canario de Salud: Programa de prevención de la conducta suicida en Canarias (2021). https://www3.gobiernodecanarias.org/sanidad/scs/content/3f5ce57d-1085-11ec-bfb0-874800d2c074/PPCSC.pdf
Sufrate-Sorzano, T., et al.: Health plans for suicide prevention in Spain: a descriptive analysis of the published documents. Nurs. Rep. 12(1), 77–89 (2022)
Vaidyam, A.N., Wisniewski, H., Halamka, J.D., Kashavan, M.S., Torous, J.B.: Chatbots and conversational agents in mental health: a review of the psychiatric landscape. Can. J. Psychiatry 64(7), 456–464 (2019)
Valizadeh, M., Parde, N.: The AI doctor is in: a survey of task-oriented dialogue systems for healthcare applications. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 6638–6660 (2022)
WHO: Suicide worldwide in 2019: global health estimates (2021)
Wolf, T., et al.: Transformers: state-of-the-art natural language processing. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp. 38–45 (2020)
Zhang, T., et al.: Natural language processing applied to mental illness detection: a narrative review. NPJ Digit. Med. 5(1), 46 (2022)
Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: evaluating text generation with BERT. arXiv preprint arXiv:1904.09675 (2019)
Acknowledgements
This work was partially supported by Grant PID2020-115225RB-I00 funded by MCIN/AEI/ 10.13039/501100011033, and by funds for the 2023 strategies of the Spanish Ministry of Health, which were approved in the CISNS on June 23, 2023, to support the implementation of the Mental Health Action Plan.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ascorbe, P., Campos, M.S., Domínguez, C., Heras, J., Pérez, M., Terroba-Reinares, A.R. (2024). An Architecture Towards Building a Reliable Suicide Information Chatbot. In: Alonso-Betanzos, A., et al. Advances in Artificial Intelligence. CAEPIA 2024. Lecture Notes in Computer Science(), vol 14640. Springer, Cham. https://doi.org/10.1007/978-3-031-62799-6_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-62799-6_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-62798-9
Online ISBN: 978-3-031-62799-6
eBook Packages: Computer ScienceComputer Science (R0)