[go: up one dir, main page]

Skip to main content

An Architecture Towards Building a Reliable Suicide Information Chatbot

  • Conference paper
  • First Online:
Advances in Artificial Intelligence (CAEPIA 2024)

Abstract

Suicide is a major health and social issue worldwide; therefore, a simple access to reliable sources of information that can be used by family members or friends of people who have suicidal ideation can be a valuable resource. This information can be provided by means of chatbot tools; however, the reliability and topicality of the chatbot’s answers should be ensured. In this work, we present an architecture to build a chatbot with the aim of providing reliable suicide information in Spanish. The architecture consists of two text classification models (one to check that a user’s question is related to suicidal content, and another to decide whether the user is looking for information or if the question should be derived to a human), and a retrieval augmented generation system that, using as a basis a corpus of documents filtered by experts, generates an answer to the user question. In addition, all the components of the architecture have been automatically tested to prove their suitability to be incorporated to the chatbot. The developed system is a step towards helping in one of the greatest global public health concerns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://huggingface.co/hiiamsid/sentence_similarity_spanish_es.

References

  1. ChatGPT (2023). https://chat.openai.com

  2. Mixtral, sparse mixture of experts (2023). https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1

  3. Suicide comments (2023). https://huggingface.co/datasets/hackathon-somos-nlp-2023/suicide-comments-es

  4. Abd-Alrazaq, A.A., et al.: Perceptions and opinions of patients about mental health chatbots: scoping review. J. Med. Internet Res. 23(1), e17828 (2021)

    Article  Google Scholar 

  5. Bertin Project: Bertin-GPT-J-6B alpaca (2023). https://huggingface.co/bertin-project/bertin-gpt-j-6B-alpaca

  6. Burnap, P., Colombo, W., Scourfield, J.: Machine classification and analysis of suicide-related communication on twitter. In: Proceedings of the 26th ACM Conference on Hypertext & Social Media, pp. 75–84 (2015)

    Google Scholar 

  7. Cañete, J., Chaperon, G., Fuentes, R., Ho, J.H., Kang, H., Pérez, J.: Spanish pre-trained BERT model and evaluation data. In: PML4DC at ICLR 2020 (2020)

    Google Scholar 

  8. Clibrain: LINCE mistral 7B instruct (2023). https://huggingface.co/clibrain/lince-mistral-7b-it-es

  9. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. CoRR abs/1810.04805 (2018). http://arxiv.org/abs/1810.04805

  10. Es, S., James, J., Espinosa-Anke, L., Schockaert, S.: RAGAs: automated evaluation of retrieval augmented generation. arXiv preprint arXiv:2309.15217 (2023)

  11. Gobierno de Navarra: Prevención y actuación ante conductas suicidas (2014). https://www.educacion.navarra.es/documents/27590/548485/Suicidio.pdf/b5374981-511a-40ed-82c5-7c74bc23b049

  12. Instituto Nacional de Estadística: Defunciones según la causa de muerte año 2022. Technical report (2023). https://www.ine.es/prensa/edcm_2022_d.pdf

  13. Jiang, A.Q., et al.: Mixtral of experts. arXiv preprint arXiv:2401.04088 (2024)

  14. Lewis, P., et al.: Retrieval-augmented generation for knowledge-intensive NLP tasks. Adv. Neural. Inf. Process. Syst. 33, 9459–9474 (2020)

    Google Scholar 

  15. Rebedea, T., Dinu, R., Sreedhar, M., Parisien, C., Cohen, J.: Nemo guardrails: a toolkit for controllable and safe LLM applications with programmable rails. arXiv preprint arXiv:2310.10501 (2023)

  16. Rioja Salud: Plan de prevención del suicidio en La Rioja (2019). https://www.riojasalud.es/files/content/ciudadanos/planes-estrategicos/PLAN_PREVENCION_CONDUCTA_SUICIDA_DEF.pdf

  17. Romero, M.: Spanish electra by manuel romero (2020). https://huggingface.co/mrm8488/electricidad-base-discriminator/

  18. Savage, N.: The rise of the chatbots. Commun. ACM 66(7), 16–17 (2023)

    Article  Google Scholar 

  19. Seah, J.H., Shim, K.J.: Data mining approach to the detection of suicide in social media: a case study of Singapore. In: 2018 IEEE International Conference on Big Data (big Data), pp. 5442–5444. IEEE (2018)

    Google Scholar 

  20. Servicio Canario de Salud: Programa de prevención de la conducta suicida en Canarias (2021). https://www3.gobiernodecanarias.org/sanidad/scs/content/3f5ce57d-1085-11ec-bfb0-874800d2c074/PPCSC.pdf

  21. Sufrate-Sorzano, T., et al.: Health plans for suicide prevention in Spain: a descriptive analysis of the published documents. Nurs. Rep. 12(1), 77–89 (2022)

    Article  Google Scholar 

  22. Vaidyam, A.N., Wisniewski, H., Halamka, J.D., Kashavan, M.S., Torous, J.B.: Chatbots and conversational agents in mental health: a review of the psychiatric landscape. Can. J. Psychiatry 64(7), 456–464 (2019)

    Article  Google Scholar 

  23. Valizadeh, M., Parde, N.: The AI doctor is in: a survey of task-oriented dialogue systems for healthcare applications. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 6638–6660 (2022)

    Google Scholar 

  24. WHO: Suicide worldwide in 2019: global health estimates (2021)

    Google Scholar 

  25. Wolf, T., et al.: Transformers: state-of-the-art natural language processing. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp. 38–45 (2020)

    Google Scholar 

  26. Zhang, T., et al.: Natural language processing applied to mental illness detection: a narrative review. NPJ Digit. Med. 5(1), 46 (2022)

    Article  Google Scholar 

  27. Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: evaluating text generation with BERT. arXiv preprint arXiv:1904.09675 (2019)

Download references

Acknowledgements

This work was partially supported by Grant PID2020-115225RB-I00 funded by MCIN/AEI/ 10.13039/501100011033, and by funds for the 2023 strategies of the Spanish Ministry of Health, which were approved in the CISNS on June 23, 2023, to support the implementation of the Mental Health Action Plan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jónathan Heras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ascorbe, P., Campos, M.S., Domínguez, C., Heras, J., Pérez, M., Terroba-Reinares, A.R. (2024). An Architecture Towards Building a Reliable Suicide Information Chatbot. In: Alonso-Betanzos, A., et al. Advances in Artificial Intelligence. CAEPIA 2024. Lecture Notes in Computer Science(), vol 14640. Springer, Cham. https://doi.org/10.1007/978-3-031-62799-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-62799-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-62798-9

  • Online ISBN: 978-3-031-62799-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics