Abstract
Given a metric space (V, d) along with an integer k, the \(k\text {-}\textsc {Median}\) problem asks to open k centers \(C \subseteq V\) to minimize \(\sum _{v \in V} d(v, C)\), where \(d(v, C) := \min _{c \in C} d(v, c)\). While the best-known approximation ratio 2.613 holds for the more general supplier version where an additional set \(F \subseteq V\) is given with the restriction \(C \subseteq F\), the best known hardness for these two versions are \(1+1/e \approx 1.36\) and \(1+2/e \approx 1.73\) respectively, using the same reduction from \(\textsc {Maximum}~k\text {-}\textsc {Coverage} \). We prove the following two results separating them.
-
1.
We give a 1.546-parameterized approximation algorithm that runs in time \(f(k) n^{O(1)}\). Since \(1+2/e\) is proved to be the optimal approximation ratio for the supplier version in the parameterized setting, this result separates the original \(k\text {-}\textsc {Median}\) from the supplier version.
-
2.
We prove a 1.416-hardness for polynomial-time algorithms assuming the Unique Games Conjecture. This is achieved via a new fine-grained hardness of \(\textsc {Maximum}~k\text {-}\textsc {Coverage} \) for small set sizes.
Our upper bound and lower bound are derived from almost the same expression, with the only difference coming from the well-known separation between the powers of LP and SDP on (hypergraph) vertex cover.
E. Lee—Supported in part by NSF grant CCF-2236669 and Google.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Typically, it is stated in terms of the dual set system where the input is a set system, and the goal is to choose k sets whose union size is maximized.
References
Adamczyk, M., Byrka, J., Marcinkowski, J., Meesum, S.M., Wlodarczyk, M.: Constant-factor FPT approximation for capacitated k-median. In: 27th Annual European Symposium on Algorithms (ESA 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2019)
Agrawal, A., Inamdar, T., Saurabh, S., Xue, J.: Clustering what matters: optimal approximation for clustering with outliers. J. Artif. Intell. Res. 78, 143–166 (2023)
Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k-median and facility location problems. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, pp. 21–29 (2001)
Badanidiyuru, A., Kleinberg, R., Lee, H.: Approximating low-dimensional coverage problems. In: Proceedings of the Twenty-Eighth Annual Symposium on Computational Geometry, pp. 161–170 (2012)
Bandyapadhyay, S., Fomin, F.V., Golovach, P.A., Purohit, N., Simonov, K.: FPT approximation for fair minimum-load clustering. In: 17th International Symposium on Parameterized and Exact Computation (2022)
Bandyapadhyay, S., Lochet, W., Saurabh, S.: FPT constant-approximations for capacitated clustering to minimize the sum of cluster radii. In: 39th International Symposium on Computational Geometry (SoCG 2023). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2023)
Bartal, Y.: On approximating arbitrary metrices by tree metrics. In: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, pp. 161–168 (1998)
Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k-median and positive correlation in budgeted optimization. ACM Trans. Algorithms (TALG) 13(2), 1–31 (2017)
Charikar, M., Chekuri, C., Goel, A., Guha, S.: Rounding via trees: deterministic approximation algorithms for group Steiner trees and k-median. In: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, pp. 114–123 (1998)
Charikar, M., Guha, S.: Improved combinatorial algorithms for the facility location and k-median problems. In: 40th Annual Symposium on Foundations of Computer Science (Cat. No. 99CB37039), pp. 378–388. IEEE (1999)
Charikar, M., Guha, S., Tardos, É., Shmoys, D.B.: A constant-factor approximation algorithm for the k-median problem. In: Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, pp. 1–10 (1999)
Charikar, M., Li, S.: A dependent LP-rounding approach for the k-median problem. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012. LNCS, vol. 7391, pp. 194–205. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31594-7_17
Charikar, M., Makarychev, K., Makarychev, Y.: Integrality gaps for Sherali-Adams relaxations. In: Proceedings of the Forty-First Annual ACM symposium on Theory of Computing, pp. 283–292 (2009)
Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight FPT approximations for k-median and k-means. In: 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019), vol. 132, pp. 42–1. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2019)
Cohen-Addad, V., Li, J.: On the fixed-parameter tractability of capacitated clustering. In: 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019), vol. 132, p. 41-1. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2019)
Cohen-Addad Viallat, V., Grandoni, F., Lee, E., Schwiegelshohn, C.: Breaching the 2 LMP approximation barrier for facility location with applications to k-median. In: Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 940–986. SIAM (2023)
Feige, U.: A threshold of ln n for approximating set cover. J. ACM (JACM) 45(4), 634–652 (1998)
Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing, pp. 569–578 (2011)
Feng, Q., Zhang, Z., Huang, Z., Xu, J., Wang, J.: A unified framework of FPT approximation algorithms for clustering problems. In: 31st International Symposium on Algorithms and Computation (ISAAC 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020)
Gowda, K.N., Pensyl, T., Srinivasan, A., Trinh, K.: Improved bi-point rounding algorithms and a golden barrier for k-median. In: Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 987–1011. SIAM (2023)
Goyal, D., Jaiswal, R.: Tight FPT approximation for socially fair clustering. Inf. Process. Lett. 182, 106383 (2023)
Goyal, D., Jaiswal, R., Kumar, A.: FPT approximation for constrained metric k-median/means. In: 15th International Symposium on Parameterized and Exact Computation. p. 1 (2020)
Guha, S., Khuller, S.: Greedy strikes back: improved facility location algorithms. J. Algorithms 31(1), 228–248 (1999)
Håstad, J.: Some optimal inapproximability results. J. ACM (JACM) 48(4), 798–859 (2001)
Inamdar, T., Varadarajan, K.: Capacitated sum-of-radii clustering: an FPT approximation. In: 28th Annual European Symposium on Algorithms (ESA 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020)
Jain, K., Mahdian, M., Markakis, E., Saberi, A., Vazirani, V.V.: Greedy facility location algorithms analyzed using dual fitting with factor-revealing LP. J. ACM (JACM) 50(6), 795–824 (2003)
Jain, K., Vazirani, V.V.: Approximation algorithms for metric facility location and k-median problems using the primal-dual schema and Lagrangian relaxation. J. ACM (JACM) 48(2), 274–296 (2001)
Jain, P., et al.: Parameterized approximation scheme for biclique-free max k-weight SAT and max coverage. In: Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 3713–3733. SIAM (2023)
Jaiswal, R., Kumar, A.: Clustering what matters in constrained settings. In: 34th International Symposium on Algorithms and Computation (2023)
Khot, S.: On the power of unique 2-prover 1-round games. In: Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Computing, pp. 767–775 (2002)
Li, S., Svensson, O.: Approximating k-median via pseudo-approximation. In: Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing, pp. 901–910 (2013)
Lin, J.H., Vitter, J.S.: Approximation algorithms for geometric median problems. Inf. Process. Lett. 44(5), 245–249 (1992)
Lin, J.H., Vitter, J.S.: e-approximations with minimum packing constraint violation. In: Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of Computing, pp. 771–782 (1992)
Manurangsi, P.: A note on max k-vertex cover: faster FPT-AS, smaller approximate kernel and improved approximation. In: 2nd Symposium on Simplicity in Algorithms (2019)
Xu, Y., Möhring, R.H., Xu, D., Zhang, Y., Zou, Y.: A constant FPT approximation algorithm for hard-capacitated k-means. Optim. Eng. 21, 709–722 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Anand, A., Lee, E. (2024). Separating \(k\text {-}\textsc {Median}\) from the Supplier Version. In: Vygen, J., Byrka, J. (eds) Integer Programming and Combinatorial Optimization. IPCO 2024. Lecture Notes in Computer Science, vol 14679. Springer, Cham. https://doi.org/10.1007/978-3-031-59835-7_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-59835-7_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-59834-0
Online ISBN: 978-3-031-59835-7
eBook Packages: Computer ScienceComputer Science (R0)