Abstract
We introduce a directed spatial random graph model aimed at modelling certain aspects of social media networks. We provide two variants of the model: an infinite version and an increasing sequence of finite graphs that locally converge to the infinite model. Both variants have in common that each vertex is placed into Euclidean space and carries a birth time. Given locations and birth times of two vertices, an arc is formed from younger to older vertex with a probability depending on both birth times and the spatial distance of the vertices. If such an arc is formed, a reverse arc is formed with probability depending on the ratio of the endpoints’ birth times. Aside from the local limit result connecting the models, we investigate degree distributions, two different clustering metrics and directed percolation.
CM’s research is supported by the German Research Foundation (DFG) Priority Programme 2265, grant no. 4439160. LL gratefully received support by the Leibniz Association within the Leibniz Junior Research Group on Probabilistic Methods for Dynamic Communication Networks as part of the Leibniz Competition (grant no. J105/2020).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
One example that comes to mind are scientific citation networks in which a publication sends an arc to every publication it references.
- 2.
Clearly, it suffices to update the root vertex only at the birth times of new vertices, since we are merely interested in the one dimensional marginal distributions of the resulting family of rooted graphs.
- 3.
In fact, \(D_*\) is the quotient space of equivalence classes of rooted graphs up to graph isomorphism, but we do not distinguish between a graph and its isomorphism class here. For more background on \(D_*\) and local weak convergence see [1].
References
Aldous, D., Lyons, R.: Processes on unimodular random networks. Electron. J. Probab. 12(54), 1454–1508 (2007). https://doi.org/10.1214/EJP.v12-463
Aldous, D., Steele, J.M.: The objective method: probabilistic combinatorial optimization and local weak convergence. In: Kesten, H. (eds.) Probability on discrete structures, Encyclopaedia Math. Sci., vol. 110, pp. 1–72. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-662-09444-0_1
Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999). https://doi.org/10.1126/science.286.5439.509
Benjamini, I., Schramm, O.: Recurrence of distributional limits of finite planar graphs. Electron. J. Probab. 6(23), 13 (2001). https://doi.org/10.1214/EJP.v6-96
van den Berg, J., Kesten, H.: Inequalities with applications to percolation and reliability. J. Appl. Probab. 22(3), 556–569 (1985). https://doi.org/10.1017/s0021900200029326
Bloznelis, M., Götze, F., Jaworski, J.: Birth of a strongly connected giant in an inhomogeneous random digraph. J. Appl. Probab. 49(3), 601–611 (2012). https://doi.org/10.1239/jap/1346955320
Bollobás, B., Riordan, O.: Robustness and vulnerability of scale-free random graphs. Internet Math. 1(1), 1–35 (2003). https://doi.org/10.1080/15427951.2004.10129080
Bollobás, B., Riordan, O., Spencer, J., Tusnády, G.: The degree sequence of a scale-free random graph process. Random Struct. Alg. 18(3), 279–290 (2001). https://doi.org/10.1002/rsa.1009
Broadbent, S.R., Hammersley, J.M.: Percolation processes. I. Crystals and mazes. Proc. Cambridge Philos. Soc. 53, 629–641 (1957). https://doi.org/10.1017/s0305004100032680
Broder, A., et al.: Graph structure in the web. Comput. Netw. 33(1), 309–320 (2000)
Burton, R.M., Keane, M.: Density and uniqueness in percolation. Comm. Math. Phys. 121(3), 501–505 (1989). http://projecteuclid.org/euclid.cmp/1104178143
Cao, J., Olvera-Cravioto, M.: Connectivity of a general class of inhomogeneous random digraphs. Random Struct. Alg. 56(3), 722–774 (2020). https://doi.org/10.1002/rsa.20892
Chen, N., Olvera-Cravioto, M.: Directed random graphs with given degree distributions. Stoch. Syst. 3(1), 147–186 (2013). https://doi.org/10.1214/12-SSY076
Cirkovic, D., Wang, T., Resnick, S.I.: Preferential attachment with reciprocity: properties and estimation. J. Complex Netw. 11(5), Paper No. cnad031, 41 (2023). https://doi.org/10.1093/comnet/cnad031
Daley, D.J., Vere-Jones, D.: An introduction to the theory of point processes. Vol. II. Probability and its Applications (New York), 2nd edn. General Theory and Structure. Springer, New York (2008). https://doi.org/10.1007/978-0-387-49835-5
Deijfen, M., van der Hofstad, R., Hooghiemstra, G.: Scale-free percolation. Ann. Inst. Henri Poincaré Probab. Stat. 49(3), 817–838 (2013). https://doi.org/10.1214/12-AIHP480
Deprez, P., Wüthrich, M.V.: Construction of directed assortative configuration graphs. Internet Math. 1(1) (2017). https://doi.org/10.24166/im.05.2017
Deprez, P., Wüthrich, M.V.: Scale-free percolation in continuum space. Commun. Math. Stat. 7(3), 269–308 (2019). https://doi.org/10.1007/s40304-018-0142-0
Dereich, S., Mönch, C., Mörters, P.: Typical distances in ultrasmall random networks. Adv. Appl. Probab. 44(2), 583–601 (2012). https://doi.org/10.1239/aap/1339878725
Dereich, S., Mörters, P.: Random networks with sublinear preferential attachment: degree evolutions. Electron. J. Probab. 14(43), 1222–1267 (2009). https://doi.org/10.1214/EJP.v14-647
Gracar, P., Grauer, A., Lüchtrath, L., Mörters, P.: The age-dependent random connection model. Queueing Syst. 93(3–4), 309–331 (2019). https://doi.org/10.1007/s11134-019-09625-y
Gracar, P., Lüchtrath, L., Mörters, P.: Percolation phase transition in weight-dependent random connection models. Adv. Appl. Probab. 53(4), 1090–1114 (2021). https://doi.org/10.1017/apr.2021.13
Gracar, P., Lüchtrath, L., Mönch, C.: Finiteness of the percolation threshold for inhomogeneous long-range models in one dimension (2022)
Grimmett, G.: Percolation. In: Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 321, 2nd edn. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-662-03981-6
Heydenreich, M., van der Hofstad, R., Last, G., Matzke, K.: Lace expansion and mean-field behavior for the random connection model (2022)
van der Hofstad, R.: Random Graphs and Complex Networks. vol. 1, Cambridge Series in Statistical and Probabilistic Mathematics, vol. 43. Cambridge University Press, Cambridge (2017). https://doi.org/10.1017/9781316779422
van der Hofstad, R.: The giant in random graphs is almost local (2023)
van der Hofstad, R., van der Hoorn, P., Maitra, N.: Local limits of spatial inhomogeneous random graphs. Adv. Appl. Probab. 55(3), 793–840 (2023). https://doi.org/10.1017/apr.2022.61
Jacob, E., Mörters, P.: Spatial preferential attachment networks: power laws and clustering coefficients. Ann. Appl. Probab. 25(2), 632–662 (2015). https://doi.org/10.1214/14-AAP1006
Jacob, E., Mörters, P.: Robustness of scale-free spatial networks. Ann. Probab. 45(3), 1680–1722 (2017). https://doi.org/10.1214/16-AOP1098
Last, G., Penrose, M.: Lectures on the Poisson Process. Cambridge University Press (2017). https://doi.org/10.1017/9781316104477
Meester, R., Roy, R.: Continuum percolation, Cambridge Tracts in Mathematics, vol. 119. Cambridge University Press, Cambridge (1996). https://doi.org/10.1017/CBO9780511895357
Mönch, C., Rizk, A.: Directed acyclic graph-type distributed ledgers via young-age preferential attachment. Stoch. Syst. 13(3), 377–397 (2023). https://doi.org/10.1287/stsy.2022.0005
Penrose, M.D.: The strong giant in a random digraph. J. Appl. Probab. 53(1), 57–70 (2016). https://doi.org/10.1017/jpr.2015.8
Trolliet, T., Cohen, N., Giroire, F., Hogie, L., Pérennes, S.: Interest clustering coefficient: a new metric for directed networks like Twitter. J. Complex Netw. 10(1), Paper No. 30 (2022). https://doi.org/10.1093/comnet/cnab030
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Lüchtrath, L., Mönch, C. (2024). The Directed Age-Dependent Random Connection Model with Arc Reciprocity. In: Dewar, M., et al. Modelling and Mining Networks. WAW 2024. Lecture Notes in Computer Science, vol 14671. Springer, Cham. https://doi.org/10.1007/978-3-031-59205-8_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-59205-8_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-59204-1
Online ISBN: 978-3-031-59205-8
eBook Packages: Computer ScienceComputer Science (R0)