[go: up one dir, main page]

Skip to main content

The Directed Age-Dependent Random Connection Model with Arc Reciprocity

  • Conference paper
  • First Online:
Modelling and Mining Networks (WAW 2024)

Abstract

We introduce a directed spatial random graph model aimed at modelling certain aspects of social media networks. We provide two variants of the model: an infinite version and an increasing sequence of finite graphs that locally converge to the infinite model. Both variants have in common that each vertex is placed into Euclidean space and carries a birth time. Given locations and birth times of two vertices, an arc is formed from younger to older vertex with a probability depending on both birth times and the spatial distance of the vertices. If such an arc is formed, a reverse arc is formed with probability depending on the ratio of the endpoints’ birth times. Aside from the local limit result connecting the models, we investigate degree distributions, two different clustering metrics and directed percolation.

CM’s research is supported by the German Research Foundation (DFG) Priority Programme 2265, grant no. 4439160. LL gratefully received support by the Leibniz Association within the Leibniz Junior Research Group on Probabilistic Methods for Dynamic Communication Networks as part of the Leibniz Competition (grant no. J105/2020).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    One example that comes to mind are scientific citation networks in which a publication sends an arc to every publication it references.

  2. 2.

    Clearly, it suffices to update the root vertex only at the birth times of new vertices, since we are merely interested in the one dimensional marginal distributions of the resulting family of rooted graphs.

  3. 3.

    In fact, \(D_*\) is the quotient space of equivalence classes of rooted graphs up to graph isomorphism, but we do not distinguish between a graph and its isomorphism class here. For more background on \(D_*\) and local weak convergence see [1].

References

  1. Aldous, D., Lyons, R.: Processes on unimodular random networks. Electron. J. Probab. 12(54), 1454–1508 (2007). https://doi.org/10.1214/EJP.v12-463

    Article  MathSciNet  Google Scholar 

  2. Aldous, D., Steele, J.M.: The objective method: probabilistic combinatorial optimization and local weak convergence. In: Kesten, H. (eds.) Probability on discrete structures, Encyclopaedia Math. Sci., vol. 110, pp. 1–72. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-662-09444-0_1

  3. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999). https://doi.org/10.1126/science.286.5439.509

    Article  MathSciNet  Google Scholar 

  4. Benjamini, I., Schramm, O.: Recurrence of distributional limits of finite planar graphs. Electron. J. Probab. 6(23), 13 (2001). https://doi.org/10.1214/EJP.v6-96

  5. van den Berg, J., Kesten, H.: Inequalities with applications to percolation and reliability. J. Appl. Probab. 22(3), 556–569 (1985). https://doi.org/10.1017/s0021900200029326

    Article  MathSciNet  Google Scholar 

  6. Bloznelis, M., Götze, F., Jaworski, J.: Birth of a strongly connected giant in an inhomogeneous random digraph. J. Appl. Probab. 49(3), 601–611 (2012). https://doi.org/10.1239/jap/1346955320

    Article  MathSciNet  Google Scholar 

  7. Bollobás, B., Riordan, O.: Robustness and vulnerability of scale-free random graphs. Internet Math. 1(1), 1–35 (2003). https://doi.org/10.1080/15427951.2004.10129080

  8. Bollobás, B., Riordan, O., Spencer, J., Tusnády, G.: The degree sequence of a scale-free random graph process. Random Struct. Alg. 18(3), 279–290 (2001). https://doi.org/10.1002/rsa.1009

    Article  MathSciNet  Google Scholar 

  9. Broadbent, S.R., Hammersley, J.M.: Percolation processes. I. Crystals and mazes. Proc. Cambridge Philos. Soc. 53, 629–641 (1957). https://doi.org/10.1017/s0305004100032680

  10. Broder, A., et al.: Graph structure in the web. Comput. Netw. 33(1), 309–320 (2000)

    Article  Google Scholar 

  11. Burton, R.M., Keane, M.: Density and uniqueness in percolation. Comm. Math. Phys. 121(3), 501–505 (1989). http://projecteuclid.org/euclid.cmp/1104178143

  12. Cao, J., Olvera-Cravioto, M.: Connectivity of a general class of inhomogeneous random digraphs. Random Struct. Alg. 56(3), 722–774 (2020). https://doi.org/10.1002/rsa.20892

    Article  MathSciNet  Google Scholar 

  13. Chen, N., Olvera-Cravioto, M.: Directed random graphs with given degree distributions. Stoch. Syst. 3(1), 147–186 (2013). https://doi.org/10.1214/12-SSY076

    Article  MathSciNet  Google Scholar 

  14. Cirkovic, D., Wang, T., Resnick, S.I.: Preferential attachment with reciprocity: properties and estimation. J. Complex Netw. 11(5), Paper No. cnad031, 41 (2023). https://doi.org/10.1093/comnet/cnad031

  15. Daley, D.J., Vere-Jones, D.: An introduction to the theory of point processes. Vol. II. Probability and its Applications (New York), 2nd edn. General Theory and Structure. Springer, New York (2008). https://doi.org/10.1007/978-0-387-49835-5

  16. Deijfen, M., van der Hofstad, R., Hooghiemstra, G.: Scale-free percolation. Ann. Inst. Henri Poincaré Probab. Stat. 49(3), 817–838 (2013). https://doi.org/10.1214/12-AIHP480

    Article  MathSciNet  Google Scholar 

  17. Deprez, P., Wüthrich, M.V.: Construction of directed assortative configuration graphs. Internet Math. 1(1) (2017). https://doi.org/10.24166/im.05.2017

  18. Deprez, P., Wüthrich, M.V.: Scale-free percolation in continuum space. Commun. Math. Stat. 7(3), 269–308 (2019). https://doi.org/10.1007/s40304-018-0142-0

    Article  MathSciNet  Google Scholar 

  19. Dereich, S., Mönch, C., Mörters, P.: Typical distances in ultrasmall random networks. Adv. Appl. Probab. 44(2), 583–601 (2012). https://doi.org/10.1239/aap/1339878725

    Article  MathSciNet  Google Scholar 

  20. Dereich, S., Mörters, P.: Random networks with sublinear preferential attachment: degree evolutions. Electron. J. Probab. 14(43), 1222–1267 (2009). https://doi.org/10.1214/EJP.v14-647

    Article  MathSciNet  Google Scholar 

  21. Gracar, P., Grauer, A., Lüchtrath, L., Mörters, P.: The age-dependent random connection model. Queueing Syst. 93(3–4), 309–331 (2019). https://doi.org/10.1007/s11134-019-09625-y

    Article  MathSciNet  Google Scholar 

  22. Gracar, P., Lüchtrath, L., Mörters, P.: Percolation phase transition in weight-dependent random connection models. Adv. Appl. Probab. 53(4), 1090–1114 (2021). https://doi.org/10.1017/apr.2021.13

    Article  MathSciNet  Google Scholar 

  23. Gracar, P., Lüchtrath, L., Mönch, C.: Finiteness of the percolation threshold for inhomogeneous long-range models in one dimension (2022)

    Google Scholar 

  24. Grimmett, G.: Percolation. In: Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 321, 2nd edn. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-662-03981-6

  25. Heydenreich, M., van der Hofstad, R., Last, G., Matzke, K.: Lace expansion and mean-field behavior for the random connection model (2022)

    Google Scholar 

  26. van der Hofstad, R.: Random Graphs and Complex Networks. vol. 1, Cambridge Series in Statistical and Probabilistic Mathematics, vol. 43. Cambridge University Press, Cambridge (2017). https://doi.org/10.1017/9781316779422

  27. van der Hofstad, R.: The giant in random graphs is almost local (2023)

    Google Scholar 

  28. van der Hofstad, R., van der Hoorn, P., Maitra, N.: Local limits of spatial inhomogeneous random graphs. Adv. Appl. Probab. 55(3), 793–840 (2023). https://doi.org/10.1017/apr.2022.61

    Article  MathSciNet  Google Scholar 

  29. Jacob, E., Mörters, P.: Spatial preferential attachment networks: power laws and clustering coefficients. Ann. Appl. Probab. 25(2), 632–662 (2015). https://doi.org/10.1214/14-AAP1006

    Article  MathSciNet  Google Scholar 

  30. Jacob, E., Mörters, P.: Robustness of scale-free spatial networks. Ann. Probab. 45(3), 1680–1722 (2017). https://doi.org/10.1214/16-AOP1098

    Article  MathSciNet  Google Scholar 

  31. Last, G., Penrose, M.: Lectures on the Poisson Process. Cambridge University Press (2017). https://doi.org/10.1017/9781316104477

  32. Meester, R., Roy, R.: Continuum percolation, Cambridge Tracts in Mathematics, vol. 119. Cambridge University Press, Cambridge (1996). https://doi.org/10.1017/CBO9780511895357

  33. Mönch, C., Rizk, A.: Directed acyclic graph-type distributed ledgers via young-age preferential attachment. Stoch. Syst. 13(3), 377–397 (2023). https://doi.org/10.1287/stsy.2022.0005

    Article  MathSciNet  Google Scholar 

  34. Penrose, M.D.: The strong giant in a random digraph. J. Appl. Probab. 53(1), 57–70 (2016). https://doi.org/10.1017/jpr.2015.8

    Article  MathSciNet  Google Scholar 

  35. Trolliet, T., Cohen, N., Giroire, F., Hogie, L., Pérennes, S.: Interest clustering coefficient: a new metric for directed networks like Twitter. J. Complex Netw. 10(1), Paper No. 30 (2022). https://doi.org/10.1093/comnet/cnab030

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Lüchtrath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lüchtrath, L., Mönch, C. (2024). The Directed Age-Dependent Random Connection Model with Arc Reciprocity. In: Dewar, M., et al. Modelling and Mining Networks. WAW 2024. Lecture Notes in Computer Science, vol 14671. Springer, Cham. https://doi.org/10.1007/978-3-031-59205-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-59205-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-59204-1

  • Online ISBN: 978-3-031-59205-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics