Abstract
Border Gateway Protocol (BGP) anomalies, such as hijacking, is currently growing in trend due to limited detection capabilities. BGP hijacking maliciously reroutes Internet traffic, causing Denial of Service (DoS) to major Internet Service Providers (ISPs) or redirection attacks to Internet users. While it has been shown that BGP anomalies can be detected using machine learning (ML) methods, the features used to train these ML models are not comprehensive. This is because node level features, such as the number of BGP announcements, average Autonomous System (AS) path length and average edit distance do not consider the structure or relationships present in the network graph. In this paper, an approach to extract information from BGP updates to build a network graph is proposed. Then, centrality information is used as features to model the graphical structure of the network to build an early detection tool for BGP anomalies using ML. The proposed method has been validated on real world data from the CenturyLink outage and shows promising results for anomaly detection (as early as one hour before the event was reported) in both individual and a defined group of networks. Furthermore, the anomaly source can be determined using the proposed method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Al-Musawi, B., Branch, P., Armitage, G.: Detecting BGP instability using recurrence quantification analysis (RQA). In: Proceedings of the IEEE 34th International Performance Computing and Communications Conference (IPCCC), Nanjing, China (2015)
Al-Musawi, B., Branch, P., Armitage, G.: BGP anomaly detection techniques: a survey. IEEE Commun. Surv. Tutor. 19(1), 377–396 (2017)
Al-Rousan, N.M., Trajković, L.: Machine learning models for classification of BGP anomalies. In: Proceedings of the IEEE 13th International Conference on High Performance Switching and Routing, Belgrade, Serbia, pp. 103–108 (2012)
Blazakis, D., Karir, M., Baras, J.S.: Analyzing BGP ASPATH behavior in the Internet. In: Proceedings of the 9th IEEE Global Internet Symposium (2006)
Chen, H., Yin, H., Chen, T., Nguyen, Q.V.H., Peng, W.C., Li, X.: Exploiting centrality information with graph convolutions for network representation learning. In: Proceedings of the IEEE 35th International Conference on Data Engineering (ICDE), Macao, China, pp. 590–601 (2019)
Di Battista, G., Mariani, F., Patrignani, M., Pizzonia, M.: BGPlay: a system for visualizing the interdomain routing evolution. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 295–306. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24595-7_27, http://bgplay.routeviews.org/
Fezeu, R.A.K., Zhang, Z.L.: Anomalous model-driven-telemetry network-stream BGP detection. In: Proceedings of the IEEE 28th International Conference on Network Protocols (ICNP), pp. 1–6 (2020)
Haeberlen, A., Avramopoulos, I., Rexford, J., Druschel, P.: NetReview: detecting when interdomain routing goes wrong. In: Proceedings of the 6th USENIX Symposium on Networked Systems Design and Implementation, Boston, MA, USA, pp. 437–452 (2009)
Hoarau, K., Tournoux, P.U., Razafindralambo, T.: BML: an efficient and versatile tool for BGP dataset collection. In: Proceedings of the IEEE International Conference on Communications Workshops (ICC Workshops), pp. 1–6 (2021)
Hoarau, K., Tournoux, P.U., Razafindralambo, T.: Suitability of graph representation for BGP anomaly detection. In: Proceedings of the IEEE 46th Conference on Local Computer Networks (LCN), Edmonton, AB, Canada, pp. 305–310 (2021)
Hoarau, K., Tournoux, P.U., Razafindralambo, T.: BGNN: detection of BGP anomalies using graph neural networks. In: Proceedings of the IEEE Symposium on Computers and Communications (ISCC), Rhodes Island, Greece (2022)
Latif, H., Paillissé, J., Yang, J., Cabellos-Aparicio, A., Barlet-Ros, P.: Unveiling the potential of graph neural networks for BGP anomaly detection. In: Proceedings of the 1st International Workshop on Graph Neural Networking (GNNet), Rome, Italy, pp. 7–12 (2022)
Li, Z., Rios, A.L.G., Trajković, L.: Machine learning for detecting anomalies and intrusions in communication networks. IEEE J. Sel. Areas Commun. 39(7), 2254–2264 (2021)
Lutu, A., Bagnulo, M., Cid-Sueiro, J., Maennel, O.: Separating wheat from chaff: winnowing unintended prefixes using machine learning. In: Proceedings of the IEEE Conference on Computer Communications (INFOCOM), Toronto, ON, Canada, pp. 943–951 (2014)
Odiathevar, M., Cameron, D., Seah, W.K.G., Frean, M., Valera, A.: Humans learning from machines: data science meets network management. In: Proceedings of the International Conference on COMmunication Systems NETworkS (COMSNETS), Bengaluru, India, pp. 421–428 (2021)
Peng, S., et al.: A multi-view framework for BGP anomaly detection via graph attention network. Comput. Netw. 214, 109129 (2022)
Prakash, B., Valler, N., Andersen, D., Faloutsos, M., Faloutsos, C.: BGP-lens: patterns and anomalies in internet routing updates. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France, pp. 1315–1324 (2009)
Prince, M.: Aug 30th 2020: Analysis of century-link/level(3) outage. https://blog.cloudflare.com/analysis-of-todays-centurylink-level-3-outage/
Putina, A., et al.: Unsupervised real-time detection of BGP anomalies leveraging high-rate and fine-grained telemetry data. In: Proceedings of the IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 1–2 (2018)
Rekhter, Y., Hares, S., Li, T.: A border gateway protocol 4 (BGP-4). RFC 4271 (2006). https://rfc-editor.org/rfc/rfc4271.txt
Shi, X., et al.: Detecting prefix hijackings in the internet with Argus. In: Proceedings of the Internet Measurement Conference (IMC), Boston, MA, USA, pp. 15–28 (2012)
Simon, T.L.: oof. panix sidelined by incompetence... again. https://www.mail-archive.com/nanog@merit.edu/msg40003.html
Sun, J., et al.: An efficient BGP anomaly detection scheme with hybrid graph features. In: Quan, W. (ed.) ICENAT 2022. CCIS, vol. 1696, pp. 494–506. Springer, Singapore (2022). https://doi.org/10.1007/978-981-19-9697-9_40
Tahara, M., Tateishi, N., Oimatsu, T., Majima, S.: A method to detect prefix hijacking by using ping tests. In: Ma, Y., Choi, D., Ata, S. (eds.) APNOMS 2008. LNCS, vol. 5297, pp. 390–398. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88623-5_40
Theodoridis, G., Tsigkas, O., Tzovaras, D.: A novel unsupervised method for securing BGP against routing hijacks. In: Gelenbe, E., Lent, R. (eds.) Computer and Information Sciences III, pp. 21–29. Springer, London (2013). https://doi.org/10.1007/978-1-4471-4594-3_3
de Urbina Cazenave, I.O., Köşlük, E., Ganiz, M.C.: An anomaly detection framework for BGP. In: Proceedings of the International Symposium on Innovations in Intelligent Systems and Applications, Istanbul, Turkey, pp. 107–111 (2011)
Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Structural Analysis in the Social Sciences. Cambridge University Press, Cambridge (1994)
Zhang, Z., Zhang, Y., Hu, Y.C., Mao, Z.M., Bush, R.: iSPY: detecting IP prefix hijacking on my own. IEEE/ACM Trans. Netw. 18(6), 1815–1828 (2010)
Acknowledgements
The work of Winston K.G. Seah was partially supported by a grant from the APNIC Foundation, via the Information Society Innovation Fund (ISIF Asia). The authors acknowledge the support of REANNZ for providing the BGP Update datasets.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Huang, J., Odiathevar, M., Valera, A., Sahni, J., Frean, M., Seah, W.K.G. (2024). Realtime BGP Anomaly Detection Using Graph Centrality Features. In: Barolli, L. (eds) Advanced Information Networking and Applications. AINA 2024. Lecture Notes on Data Engineering and Communications Technologies, vol 201. Springer, Cham. https://doi.org/10.1007/978-3-031-57870-0_20
Download citation
DOI: https://doi.org/10.1007/978-3-031-57870-0_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-57869-4
Online ISBN: 978-3-031-57870-0
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)