Abstract
Humans are still indispensable on industrial assembly lines, but in the event of an error, they need support from intelligent systems. In addition to the objects to be observed, it is equally important to understand the fine-grained hand movements of a human to be able to track the entire process. However, these deep learning based hand action recognition methods are very label intensive, which cannot be offered by all industrial companies due to the associated costs. This work therefore presents a self-supervised learning approach for industrial assembly processes that allows a spatio-temporal transformer architecture to be pre-trained on a variety of information from real-world video footage of daily life. Subsequently, this deep learning model is adapted to the industrial assembly task at hand using only a few labels. It is shown which known real-world datasets are best suited for representation learning of these hand actions in a regression task, and to what extent they optimize the subsequent supervised trained classification task.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Autoencoders, S.D.: Learning useful representations in a deep network with a local denoising criterion, Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio and Pierre-Antoine Manzagol. J. Mach. Learn. Res. ll, 3371–3408 (2010)
Cao, S., Xu, P., Clifton, D.A.: How to understand masked autoencoders. arXiv preprint arXiv:2202.03670 (2022)
Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Burstein, J., Doran, C., Solorio, T. (eds.) Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, 2–7 June 2019, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/n19-1423
Dosovitskiy, A., et al.: An image is worth 16\(\times \)16 words: transformers for image recognition at scale (2021)
Feichtenhofer, C., Li, Y., He, K., et al.: Masked autoencoders as spatiotemporal learners. Adv. Neural. Inf. Process. Syst. 35, 35946–35958 (2022)
Goyal, R., et al.: The “something something” video database for learning and evaluating visual common sense (2017). https://doi.org/10.48550/ARXIV.1706.04261, https://arxiv.org/abs/1706.04261
He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are scalable vision learners. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16000–16009 (2022)
Hendrycks, D., Gimpel, K.: Gaussian error linear units (GELUS). arXiv preprint arXiv:1606.08415 (2016)
Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Bach, F.R., Blei, D.M. (eds.) Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6–11 July 2015. JMLR Workshop and Conference Proceedings, vol. 37, pp. 448–456. JMLR.org (2015). https://proceedings.mlr.press/v37/ioffe15.html
Li, Y., Si, S., Li, G., Hsieh, C.J., Bengio, S.: Learnable fourier features for multi-dimensional spatial positional encoding (2021)
Li, Y., Liu, M., Rehg, J.M.: In the eye of the beholder: gaze and actions in first person video (2020). https://doi.org/10.48550/ARXIV.2006.00626, https://arxiv.org/abs/2006.00626
Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. CoRR abs/1612.03144 (2016). http://arxiv.org/abs/1612.03144
Lin, T., Goyal, P., Girshick, R.B., He, K., Dollár, P.: Focal loss for dense object detection. CoRR abs/1708.02002 (2017). http://arxiv.org/abs/1708.02002
Liu, M., Ren, S., Ma, S., Jiao, J., Chen, Y., Wang, Z., Song, W.: Gated transformer networks for multivariate time series classification. CoRR abs/2103.14438 (2021). https://arxiv.org/abs/2103.14438
Mahdisoltani, F., Berger, G., Gharbieh, W., Fleet, D.J., Memisevic, R.: Fine-grained video classification and captioning. CoRR abs/1804.09235 (2018). http://arxiv.org/abs/1804.09235
Ng, A.: Sparse autoencoder (NA). https://www.stanford.edu/class/cs294a/sparseAutoencoder.pdf
Sturm, F., Hergenroether, E., Reinhardt, J., Vojnovikj, P.S., Siegel, M.: Challenges of the creation of a dataset for vision based human hand action recognition in industrial assembly. In: Arai, K. (ed.) SAI 2023. LNNS, vol. 711, pp. 1079–1098. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-37717-4_70
Tang, P., Zhang, X.: MTSMAE: masked autoencoders for multivariate time-series forecasting. In: 2022 IEEE 34th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 982–989. IEEE (2022)
Tong, Z., Song, Y., Wang, J., Wang, L.: VideoMAE: masked autoencoders are data-efficient learners for self-supervised video pre-training. Adv. Neural. Inf. Process. Syst. 35, 10078–10093 (2022)
Trockman, A., Kolter, J.Z.: Patches are all you need? Trans. Mach. Learn. Res. 2023 (2022)
Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)
Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1096–1103 (2008). https://doi.org/10.1145/1390156.1390294
Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A., Bottou, L.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11(12) (2010)
Vondrick, C., Pirsiavash, H., Torralba, A.: Anticipating visual representations from unlabeled video. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 98–106 (2016)
Vondrick, C., Shrivastava, A., Fathi, A., Guadarrama, S., Murphy, K.: Tracking emerges by colorizing videos. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 391–408 (2018)
Wu, W., Hua, Y., Wu, S., Chen, C., Lu, A., et al.: SkeletonMAE: spatial-temporal masked autoencoders for self-supervised skeleton action recognition. arXiv preprint arXiv:2209.02399 (2022)
Xie, Z., et al.: SimMIM: a simple framework for masked image modeling. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9643–9653 (2021)
Zerveas, G., Jayaraman, S., Patel, D., Bhamidipaty, A., Eickhoff, C.: A transformer-based framework for multivariate time series representation learning. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 2114–2124 (2021)
Zhang, F., et al.: MediaPipe hands: on-device real-time hand tracking. CoRR abs/2006.10214 (2020). https://arxiv.org/abs/2006.10214
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Sturm, F., Sathiyababu, R., Allipilli, H., Hergenroether, E., Siegel, M. (2023). Self-supervised Representation Learning for Fine Grained Human Hand Action Recognition in Industrial Assembly Lines. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2023. Lecture Notes in Computer Science, vol 14361. Springer, Cham. https://doi.org/10.1007/978-3-031-47969-4_14
Download citation
DOI: https://doi.org/10.1007/978-3-031-47969-4_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-47968-7
Online ISBN: 978-3-031-47969-4
eBook Packages: Computer ScienceComputer Science (R0)