[go: up one dir, main page]

Skip to main content

Combining Automatic Coding and Instructor Input to Generate ENA Visualizations for Asynchronous Online Discussion

  • Conference paper
  • First Online:
Advances in Quantitative Ethnography (ICQE 2023)

Abstract

Asynchronous online discussions are a common fundamental tool to facilitate social interaction in hybrid and online courses. However, instructors lack the tools to accomplish the overwhelming task of evaluating asynchronous online discussion activities. In this paper we present an approach that uses Latent Dirichlet Analysis (LDA) and the instructor’s keywords to automatically extract codes from a relatively small dataset. We use the generated codes to build an Epistemic Network Analysis (ENA) model and compare this model with a previous ENA model built by human coders. The results show that there is no statistical difference between the two models. We present an analysis of these models and discuss the potential use of ENA as a visualization to help instructors evaluating asynchronous online discussions.

M. Moraes and S. Ghaffari—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ena web tool (2023). https://app.epistemicnetwork.org/login.html

  2. Aloni, M., Harrington, C.: Research based practices for improving the effectiveness of asynchronous online discussion boards. Scholarsh. Teach. Learn. Psychol. 4(4), 271 (2018)

    Article  Google Scholar 

  3. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3(Jan), 993–1022 (2003)

    MATH  Google Scholar 

  4. Bressler, D.M., Annetta, L.A., Dunekack, A., Lamb, R.L., Vallett, D.B.: How stem game design participants discuss their project goals and their success differently. In: Wasson, B., Zorgo, S. (eds.) Advances in Quantitative Ethnography, pp. 176–190. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-030-93859-8_12

    Chapter  Google Scholar 

  5. Cai, Z., Eagan, B.C.M., Shaffer, D.: Lstm neural network assisted regex development for qualitative coding. In: Advances in Quantitative Ethnography: Fourth International Conference, International Conference on Quantitative Ethnography (2022). https://doi.org/10.1007/978-3-031-31726-2_2. https://par.nsf.gov/biblio/10354430

  6. Cai, Z., Siebert-Evenstone, A., Eagan, B., Shaffer, D.W.: Using topic modeling for code discovery in large scale text data. In: Ruis, A.R., Lee, S.B. (eds.) Advances in Quantitative Ethnography: Second International Conference, ICQE 2020, Malibu, CA, USA, February 1-3, 2021, Proceedings, pp. 18–31. Springer International Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-67788-6_2

    Chapter  Google Scholar 

  7. Cai, Z., Siebert-Evenstone, Amanda, Eagan, Brendan, Shaffer, David Williamson, Xiangen, Hu., Graesser, Arthur C.: Ncoder+: a semantic tool for improving recall of ncoder coding. In: Eagan, Brendan, Misfeldt, Morten, Siebert-Evenstone, Amanda (eds.) ICQE 2019. CCIS, vol. 1112, pp. 41–54. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33232-7_4

    Chapter  Google Scholar 

  8. Choi, J., Ruis, A.R., Cai, Z., Eagan, B.R., Shaffer, D.W.: Does active learning reduce human coding?: A systematic comparison of a neural network with ncoder. In: Advances in Quantitative Ethnography: Fourth International Conference, International Conference on Quantitative Ethnography (2022). https://doi.org/10.1007/978-3-031-31726-2_3 https://par.nsf.gov/biblio/10354410

  9. Fernandez-Nieto, G.M., Martinez-Maldonado, R., Kitto, K., Bucking- ham Shum, S.: Modelling spatial behaviours in clinical team simulations using epistemic network analysis: Methodology and teacher evaluation. In: LAK21: 11th International Learning Analytics and Knowledge Conference, pp. 386–396. LAK21, Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3448139.3448176

  10. Garrison, D.R., Anderson, T., Archer, W.: Critical thinking, cognitive presence, and computer conferencing in distance education. Am. J. Distance Educ. 15(1), 7–23 (2001)

    Article  Google Scholar 

  11. Ghaffari, S., Krishnaswamy, N.: Grounding and distinguishing conceptual vocabulary through similarity learning in embodied simulations (2023). arXiv preprint arXiv:2305.13668

  12. Herder, T., et al.: Supporting teachers’ intervention in students’ virtual collaboration using a network based model. In: Proceedings of the 8th International Conference on Learning Analytics and Knowledge, pp. 21–25. LAK ’18, Association for Computing Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3170358.3170394

  13. Koh, J.H.L., Herring, S.C., Hew, K.F.: Project-based learning and student knowledge construction during asynchronous online discussion. Internet Higher Educ. 13(4), 284–291 (2010)

    Article  Google Scholar 

  14. de Lima, D.P., Gerosa, M.A., Conte, T.U., de, M., Netto, J.F.: What to expect, and how to improve online discussion forums: the instructors’ perspective. J. Internet Serv. Appl. 10, 1–15 (2019). https://doi.org/10.1186/s13174-019-0120-0

  15. Marquart, C.L., Swiecki, Z., Eagan, B., Shaffer, D.W.: Package ’ncodeR’ (2019). https://cran.r-project.org/web/packages/ncodeR/ncodeR.pdf, Accessed 18 May 2022

  16. Moraes, M., Folkestad, J., McKenna, K.: Using epistemic network analysis to help instructors evaluate asynchronous online discussions. In: Second International Conference on Quantitative Ethnography: Conference Proceedings Supplement, pp. 19–22 (2021)

    Google Scholar 

  17. Newman, D., Lau, J.H., Grieser, K., Baldwin, T.: Automatic evaluation of topic coherence. In: Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, pp. 100– 108 (2010)

    Google Scholar 

  18. Nguyen, H.: Exploring group discussion with conversational agents using epistemic network analysis. In: Wasson, B., Z¨org˝o, S. (eds.) Advances in Quantitative Ethnography, pp. 378–394. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-030-93859-8_25

  19. Saravani, S.M., Ghaffari, S., Luther, Y., Folkestad, J., Moraes, M.: Automated code extraction from discussion board text dataset. In: Advances in Quantitative Ethnography: 4th International Conference, ICQE 2022, Copenhagen, Denmark, 15–19 October 2022, Proceedings, pp. 227–238. Springer (2023). https://doi.org/10.1007/978-3-031-31726-2_16

  20. Shaffer, D.W., Collier, W., Ruis, A.R.: A tutorial on epistemic network analysis: Analyzing the structure of connections in cognitive, social, and interaction data. J. Learn. Analytics 3(3), 9–45 (2016)

    Article  Google Scholar 

  21. Shah, M., Siebert-Evenstone, A., Moots, H., Eagan, B.: Quality and safety education for nursing (qsen) in virtual reality simulations: A quantitative ethnographic examination. In: Wasson, B., Zörgő, S. (eds.) Advances in Quantitative Ethnography, pp. 237–252. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-030-93859-8_16

  22. Shum, S.B.: Qe visualizations as tools for thinking [powerpoint slides]. In: International Conference On Quantitative Ethnography 2021 Keynote Speaker (2021).   https://simon.buckinghamshum.net/wp-content/uploads/2021/02/SBS_ICQE2020_Keynote.pdf

  23. Swiecki, Z., Ruis, A., Shaffer, D.W.: Modeling and visualizing team performance using epistemic net-work analysis. In: Proceedings of the 7th Annual GIFT Users Symposium, pp. 148–156 (2019)

    Google Scholar 

  24. Thomas, M.J.: Learning within incoherent structures: The space of online discussion forums. J. Comput. Assist. Learn. 18(3), 351–366 (2002)

    Article  MathSciNet  Google Scholar 

  25. Vega, H., Irgens, G.A.: Constructing interpretations with participants through epistemic network analysis: Towards participatory approaches in quantitative ethnography. In: Wasson, B., Zörgő, S. (eds.) Advances in Quantitative Ethnography, pp. 3–16. Springer International Publishing, Cham (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcia Moraes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moraes, M., Ghaffari, S., Luther, Y., Folkesdtad, J. (2023). Combining Automatic Coding and Instructor Input to Generate ENA Visualizations for Asynchronous Online Discussion. In: Arastoopour Irgens, G., Knight, S. (eds) Advances in Quantitative Ethnography. ICQE 2023. Communications in Computer and Information Science, vol 1895. Springer, Cham. https://doi.org/10.1007/978-3-031-47014-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47014-1_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47013-4

  • Online ISBN: 978-3-031-47014-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics