Abstract
Asynchronous online discussions are a common fundamental tool to facilitate social interaction in hybrid and online courses. However, instructors lack the tools to accomplish the overwhelming task of evaluating asynchronous online discussion activities. In this paper we present an approach that uses Latent Dirichlet Analysis (LDA) and the instructor’s keywords to automatically extract codes from a relatively small dataset. We use the generated codes to build an Epistemic Network Analysis (ENA) model and compare this model with a previous ENA model built by human coders. The results show that there is no statistical difference between the two models. We present an analysis of these models and discuss the potential use of ENA as a visualization to help instructors evaluating asynchronous online discussions.
M. Moraes and S. Ghaffari—These authors contributed equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ena web tool (2023). https://app.epistemicnetwork.org/login.html
Aloni, M., Harrington, C.: Research based practices for improving the effectiveness of asynchronous online discussion boards. Scholarsh. Teach. Learn. Psychol. 4(4), 271 (2018)
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3(Jan), 993–1022 (2003)
Bressler, D.M., Annetta, L.A., Dunekack, A., Lamb, R.L., Vallett, D.B.: How stem game design participants discuss their project goals and their success differently. In: Wasson, B., Zorgo, S. (eds.) Advances in Quantitative Ethnography, pp. 176–190. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-030-93859-8_12
Cai, Z., Eagan, B.C.M., Shaffer, D.: Lstm neural network assisted regex development for qualitative coding. In: Advances in Quantitative Ethnography: Fourth International Conference, International Conference on Quantitative Ethnography (2022). https://doi.org/10.1007/978-3-031-31726-2_2. https://par.nsf.gov/biblio/10354430
Cai, Z., Siebert-Evenstone, A., Eagan, B., Shaffer, D.W.: Using topic modeling for code discovery in large scale text data. In: Ruis, A.R., Lee, S.B. (eds.) Advances in Quantitative Ethnography: Second International Conference, ICQE 2020, Malibu, CA, USA, February 1-3, 2021, Proceedings, pp. 18–31. Springer International Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-67788-6_2
Cai, Z., Siebert-Evenstone, Amanda, Eagan, Brendan, Shaffer, David Williamson, Xiangen, Hu., Graesser, Arthur C.: Ncoder+: a semantic tool for improving recall of ncoder coding. In: Eagan, Brendan, Misfeldt, Morten, Siebert-Evenstone, Amanda (eds.) ICQE 2019. CCIS, vol. 1112, pp. 41–54. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33232-7_4
Choi, J., Ruis, A.R., Cai, Z., Eagan, B.R., Shaffer, D.W.: Does active learning reduce human coding?: A systematic comparison of a neural network with ncoder. In: Advances in Quantitative Ethnography: Fourth International Conference, International Conference on Quantitative Ethnography (2022). https://doi.org/10.1007/978-3-031-31726-2_3 https://par.nsf.gov/biblio/10354410
Fernandez-Nieto, G.M., Martinez-Maldonado, R., Kitto, K., Bucking- ham Shum, S.: Modelling spatial behaviours in clinical team simulations using epistemic network analysis: Methodology and teacher evaluation. In: LAK21: 11th International Learning Analytics and Knowledge Conference, pp. 386–396. LAK21, Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3448139.3448176
Garrison, D.R., Anderson, T., Archer, W.: Critical thinking, cognitive presence, and computer conferencing in distance education. Am. J. Distance Educ. 15(1), 7–23 (2001)
Ghaffari, S., Krishnaswamy, N.: Grounding and distinguishing conceptual vocabulary through similarity learning in embodied simulations (2023). arXiv preprint arXiv:2305.13668
Herder, T., et al.: Supporting teachers’ intervention in students’ virtual collaboration using a network based model. In: Proceedings of the 8th International Conference on Learning Analytics and Knowledge, pp. 21–25. LAK ’18, Association for Computing Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3170358.3170394
Koh, J.H.L., Herring, S.C., Hew, K.F.: Project-based learning and student knowledge construction during asynchronous online discussion. Internet Higher Educ. 13(4), 284–291 (2010)
de Lima, D.P., Gerosa, M.A., Conte, T.U., de, M., Netto, J.F.: What to expect, and how to improve online discussion forums: the instructors’ perspective. J. Internet Serv. Appl. 10, 1–15 (2019). https://doi.org/10.1186/s13174-019-0120-0
Marquart, C.L., Swiecki, Z., Eagan, B., Shaffer, D.W.: Package ’ncodeR’ (2019). https://cran.r-project.org/web/packages/ncodeR/ncodeR.pdf, Accessed 18 May 2022
Moraes, M., Folkestad, J., McKenna, K.: Using epistemic network analysis to help instructors evaluate asynchronous online discussions. In: Second International Conference on Quantitative Ethnography: Conference Proceedings Supplement, pp. 19–22 (2021)
Newman, D., Lau, J.H., Grieser, K., Baldwin, T.: Automatic evaluation of topic coherence. In: Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, pp. 100– 108 (2010)
Nguyen, H.: Exploring group discussion with conversational agents using epistemic network analysis. In: Wasson, B., Z¨org˝o, S. (eds.) Advances in Quantitative Ethnography, pp. 378–394. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-030-93859-8_25
Saravani, S.M., Ghaffari, S., Luther, Y., Folkestad, J., Moraes, M.: Automated code extraction from discussion board text dataset. In: Advances in Quantitative Ethnography: 4th International Conference, ICQE 2022, Copenhagen, Denmark, 15–19 October 2022, Proceedings, pp. 227–238. Springer (2023). https://doi.org/10.1007/978-3-031-31726-2_16
Shaffer, D.W., Collier, W., Ruis, A.R.: A tutorial on epistemic network analysis: Analyzing the structure of connections in cognitive, social, and interaction data. J. Learn. Analytics 3(3), 9–45 (2016)
Shah, M., Siebert-Evenstone, A., Moots, H., Eagan, B.: Quality and safety education for nursing (qsen) in virtual reality simulations: A quantitative ethnographic examination. In: Wasson, B., Zörgő, S. (eds.) Advances in Quantitative Ethnography, pp. 237–252. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-030-93859-8_16
Shum, S.B.: Qe visualizations as tools for thinking [powerpoint slides]. In: International Conference On Quantitative Ethnography 2021 Keynote Speaker (2021). https://simon.buckinghamshum.net/wp-content/uploads/2021/02/SBS_ICQE2020_Keynote.pdf
Swiecki, Z., Ruis, A., Shaffer, D.W.: Modeling and visualizing team performance using epistemic net-work analysis. In: Proceedings of the 7th Annual GIFT Users Symposium, pp. 148–156 (2019)
Thomas, M.J.: Learning within incoherent structures: The space of online discussion forums. J. Comput. Assist. Learn. 18(3), 351–366 (2002)
Vega, H., Irgens, G.A.: Constructing interpretations with participants through epistemic network analysis: Towards participatory approaches in quantitative ethnography. In: Wasson, B., Zörgő, S. (eds.) Advances in Quantitative Ethnography, pp. 3–16. Springer International Publishing, Cham (2022)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Moraes, M., Ghaffari, S., Luther, Y., Folkesdtad, J. (2023). Combining Automatic Coding and Instructor Input to Generate ENA Visualizations for Asynchronous Online Discussion. In: Arastoopour Irgens, G., Knight, S. (eds) Advances in Quantitative Ethnography. ICQE 2023. Communications in Computer and Information Science, vol 1895. Springer, Cham. https://doi.org/10.1007/978-3-031-47014-1_26
Download citation
DOI: https://doi.org/10.1007/978-3-031-47014-1_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-47013-4
Online ISBN: 978-3-031-47014-1
eBook Packages: Computer ScienceComputer Science (R0)