Abstract
This paper describes SimNorth, an unsupervised learning approach for classifying non-standard fetal ultrasound images. SimNorth utilizes a deep feature learning model with a novel contrastive loss function to project images with similar characteristics closer together in an embedding space while pushing apart those with different image features. We then use non-linear dimensionality reduction via t-SNE and apply standard clustering algorithms such as k-means and dbscan in 2D embedding space to identify clusters containing similar fetal structures. We compare SimNorth to other unsupervised learning techniques (such as Autoencoders, MoCo, and SimCLR) and demonstrate its superior performance based on cluster purity measures.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Pokaprakarn, T., et al.: AI estimation of gestational age from blind ultrasound sweeps in low-resource settings. NEJM Evid. 1(5), EVIDoa2100058 (2022)
Assent, I.: Clustering high dimensional data. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2(4), 340–350 (2012)
Chakraborty, S., Gosthipaty, A.R., Paul, S.: G-SimCLR: self-supervised contrastive learning with guided projection via pseudo labelling. In: 2020 International Conference on Data Mining Workshops (ICDMW), pp. 912–916. IEEE (2020)
Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)
He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. arXiv preprint arXiv:1911.05722 (2019)
van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(86), 2579–2605 (2008). http://jmlr.org/papers/v9/vandermaaten08a.html
Organization, W.H., et al.: WHO recommendations on postnatal care of the mother and newborn. World Health Organization (2014)
Rykkje, A., Carlsen, J.F., Nielsen, M.B.: Hand-held ultrasound devices compared with high-end ultrasound systems: a systematic review. Diagnostics 9(2), 61 (2019)
Salomon, L., et al.: ISUOG practice guidelines: ultrasound assessment of fetal biometry and growth. Ultrasound Obstet. Gynecol. 53, 715–723 (2019). https://doi.org/10.1002/uog.20272
Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)
Van Gansbeke, W., Vandenhende, S., Georgoulis, S., Proesmans, M., Van Gool, L.: SCAN: learning to classify images without labels. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12355, pp. 268–285. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58607-2_16
Whitworth, M., Bricker, L., Mullan, C.: Ultrasound for fetal assessment in early pregnancy. Cochrane Database Syst. Rev. (7) (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Supplementary material 2 (mp4 28318 KB)
Supplementary material 3 (mp4 40050 KB)
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Prieto, J. et al. (2023). SimNorth: A Novel Contrastive Learning Approach for Clustering Prenatal Ultrasound Images. In: Kainz, B., Noble, A., Schnabel, J., Khanal, B., Müller, J.P., Day, T. (eds) Simplifying Medical Ultrasound. ASMUS 2023. Lecture Notes in Computer Science, vol 14337. Springer, Cham. https://doi.org/10.1007/978-3-031-44521-7_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-44521-7_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-44520-0
Online ISBN: 978-3-031-44521-7
eBook Packages: Computer ScienceComputer Science (R0)