[go: up one dir, main page]

Skip to main content

SimNorth: A Novel Contrastive Learning Approach for Clustering Prenatal Ultrasound Images

  • Conference paper
  • First Online:
Simplifying Medical Ultrasound (ASMUS 2023)

Abstract

This paper describes SimNorth, an unsupervised learning approach for classifying non-standard fetal ultrasound images. SimNorth utilizes a deep feature learning model with a novel contrastive loss function to project images with similar characteristics closer together in an embedding space while pushing apart those with different image features. We then use non-linear dimensionality reduction via t-SNE and apply standard clustering algorithms such as k-means and dbscan in 2D embedding space to identify clusters containing similar fetal structures. We compare SimNorth to other unsupervised learning techniques (such as Autoencoders, MoCo, and SimCLR) and demonstrate its superior performance based on cluster purity measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pokaprakarn, T., et al.: AI estimation of gestational age from blind ultrasound sweeps in low-resource settings. NEJM Evid. 1(5), EVIDoa2100058 (2022)

    Google Scholar 

  2. Assent, I.: Clustering high dimensional data. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2(4), 340–350 (2012)

    Article  Google Scholar 

  3. Chakraborty, S., Gosthipaty, A.R., Paul, S.: G-SimCLR: self-supervised contrastive learning with guided projection via pseudo labelling. In: 2020 International Conference on Data Mining Workshops (ICDMW), pp. 912–916. IEEE (2020)

    Google Scholar 

  4. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  5. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. arXiv preprint arXiv:1911.05722 (2019)

  6. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(86), 2579–2605 (2008). http://jmlr.org/papers/v9/vandermaaten08a.html

  7. Organization, W.H., et al.: WHO recommendations on postnatal care of the mother and newborn. World Health Organization (2014)

    Google Scholar 

  8. Rykkje, A., Carlsen, J.F., Nielsen, M.B.: Hand-held ultrasound devices compared with high-end ultrasound systems: a systematic review. Diagnostics 9(2), 61 (2019)

    Article  Google Scholar 

  9. Salomon, L., et al.: ISUOG practice guidelines: ultrasound assessment of fetal biometry and growth. Ultrasound Obstet. Gynecol. 53, 715–723 (2019). https://doi.org/10.1002/uog.20272

  10. Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  11. Van Gansbeke, W., Vandenhende, S., Georgoulis, S., Proesmans, M., Van Gool, L.: SCAN: learning to classify images without labels. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12355, pp. 268–285. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58607-2_16

    Chapter  Google Scholar 

  12. Whitworth, M., Bricker, L., Mullan, C.: Ultrasound for fetal assessment in early pregnancy. Cochrane Database Syst. Rev. (7) (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Prieto .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 19068 KB)

Supplementary material 2 (mp4 28318 KB)

Supplementary material 3 (mp4 40050 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Prieto, J. et al. (2023). SimNorth: A Novel Contrastive Learning Approach for Clustering Prenatal Ultrasound Images. In: Kainz, B., Noble, A., Schnabel, J., Khanal, B., Müller, J.P., Day, T. (eds) Simplifying Medical Ultrasound. ASMUS 2023. Lecture Notes in Computer Science, vol 14337. Springer, Cham. https://doi.org/10.1007/978-3-031-44521-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44521-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44520-0

  • Online ISBN: 978-3-031-44521-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics