[go: up one dir, main page]

Skip to main content

Meeting Times of Non-atomic Random Walks

  • Conference paper
  • First Online:
Stabilization, Safety, and Security of Distributed Systems (SSS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14310))

  • 235 Accesses

Abstract

In this paper, we revisit the problem of classical meeting times of random walks in graphs. In the process that two tokens (called agents) perform random walks on an undirected graph, the meeting times are defined as the expected times until they meet when the two agents are initially located at different vertices. A key feature of the problem is that, in each discrete time-clock (called round) of the process, the scheduler selects only one of the two agents, and the agent performs one move of the random walk. In the adversarial setting, the scheduler utilizes the strategy that intends to maximizing the expected time to meet. In the seminal papers [5, 11, 18], for the random walks of two agents, the notion of atomicity is implicitly considered. That is, each move of agents should complete while the other agent waits. In this paper, we consider and formalize the meeting time of non-atomic random walks. In the non-atomic random walks, we assume that in each round, only one agent can move but the move does not necessarily complete in the next round. In other words, we assume that an agent can move at a round while the other agent is still moving on an edge. For the non-atomic random walks with the adversarial schedulers, we give a polynomial upper bound on the meeting times.

This paper was supported by ANR project SAPPORO (Ref. 2019-CE25-0005-1). The full version of this article is available on arXiv.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In the literature, the term “meeting time” also be referred to represent the expected time to meet in the process that the two agents move randomly in each round [4, 10, 13, 15].

References

  1. Bampas, E., et al.: On asynchronous rendezvous in general graphs. Theoret. Comput. Sci. 753, 80–90 (2019). https://doi.org/10.1016/j.tcs.2018.06.045

    Article  MathSciNet  MATH  Google Scholar 

  2. Brightwell, G., Winkler, P.: Maximum hitting time for random walks on graphs. Random Struct. Algorithms 1(3), 263–276 (1990). https://doi.org/10.1002/rsa.3240010303

    Article  MathSciNet  MATH  Google Scholar 

  3. Bshouty, N.H., Higham, L., Warpechowska-Gruca, J.: Meeting times of random walks on graphs. Inf. Process. Lett. 69(5), 259–265 (1999). https://doi.org/10.1016/S0020-0190(99)00017-4

    Article  MathSciNet  MATH  Google Scholar 

  4. Cooper, C., Elsässer, R., Ono, H., Radzik, T.: Coalescing random walks and voting on connected graphs. SIAM J. Discret. Math. 27(4), 1748–1758 (2013). https://doi.org/10.1137/120900368

    Article  MathSciNet  MATH  Google Scholar 

  5. Coppersmith, D., Tetali, P., Winkler, P.: Collisions among random walks on a graph. SIAM J. Discret. Math. 6(3), 363–374 (1993). https://doi.org/10.1137/0406029

    Article  MathSciNet  MATH  Google Scholar 

  6. Czyzowicz, J., Pelc, A., Labourel, A.: How to meet asynchronously (almost) everywhere. ACM Trans. Algorithms 8(4), 1–14 (2012). https://doi.org/10.1145/2344422.2344427

    Article  MathSciNet  MATH  Google Scholar 

  7. De Marco, G., Gargano, L., Kranakis, E., Krizanc, D., Pelc, A., Vaccaro, U.: Asynchronous deterministic rendezvous in graphs. In: Jȩdrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 271–282. Springer, Heidelberg (2005). https://doi.org/10.1007/11549345_24

    Chapter  Google Scholar 

  8. Feige, U.: A tight upper bound on the cover time for random walks on graphs. Random Struct. Algorithms 6(1), 51–54 (1995). https://doi.org/10.1002/rsa.3240060106

    Article  MathSciNet  MATH  Google Scholar 

  9. Guilbault, S., Pelc, A.: Asynchronous rendezvous of anonymous agents in arbitrary graphs. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 421–434. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25873-2_29

    Chapter  Google Scholar 

  10. Hassin, Y., Peleg, D.: Distributed probabilistic polling and applications to proportionate agreement. In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 402–411. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48523-6_37

    Chapter  Google Scholar 

  11. Israeli, A., Jalfon, M.: Token management schemes and random walks yield self-stabilizing mutual exclusion. In: Proceedings of the Ninth Annual ACM Symposium on Principles of Distributed Computing, pp. 119–131 (1990)

    Google Scholar 

  12. Kahn, J.D., Linial, N., Nisan, N., Saks, M.E.: On the cover time of random walks on graphs. J. Theor. Probab. 2, 121–128 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kanade, V., Mallmann-Trenn, F., Sauerwald, T.: On coalescence time in graphs-when is coalescing as fast as meeting? ACM Trans. Algorithms 19(2), 1–46 (2023). https://doi.org/10.1145/3576900

    Article  MathSciNet  MATH  Google Scholar 

  14. Lovász, L.: Random walks on graphs. Comb. Paul Erdos Eighty 2, 1–46 (1993)

    Google Scholar 

  15. Oliveira, R.I., Peres, Y.: Random walks on graphs: new bounds on hitting, meeting, coalescing and returning. In: 2019 Proceedings of the Meeting on Analytic Algorithmics and Combinatorics, pp. 119–126 (2019). https://doi.org/10.1137/1.9781611975505.13

  16. Tetali, P.: Random walks and the effective resistance of networks. J. Theor. Probab. 4, 101–109 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Tetali, P., Winkler, P.: On a random walk problem arising in self-stabilizing token management. In: Proceedings of the Tenth Annual ACM Symposium on Principles of Distributed Computing, pp. 273–280. Association for Computing Machinery (1991). https://doi.org/10.1145/112600.112623

  18. Tetali, P., Winkler, P.: Simultaneous reversible Markov chains. Comb. Paul Erdos Eighty 1 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryota Eguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Eguchi, R., Ooshita, F., Inoue, M., Tixeuil, S. (2023). Meeting Times of Non-atomic Random Walks. In: Dolev, S., Schieber, B. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2023. Lecture Notes in Computer Science, vol 14310. Springer, Cham. https://doi.org/10.1007/978-3-031-44274-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44274-2_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44273-5

  • Online ISBN: 978-3-031-44274-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics