Abstract
Generalization capabilities of learning-based medical image segmentation across domains are currently limited by the performance degradation caused by the domain shift, particularly for ultrasound (US) imaging. The quality of US images heavily relies on carefully tuned acoustic parameters, which vary across sonographers, machines, and settings. To improve the generalizability on US images across domains, we propose MI-SegNet, a novel mutual information (MI) based framework to explicitly disentangle the anatomical and domain feature representations; therefore, robust domain-independent segmentation can be expected. Two encoders are employed to extract the relevant features for the disentanglement. The segmentation only uses the anatomical feature map for its prediction. In order to force the encoders to learn meaningful feature representations a cross-reconstruction method is used during training. Transformations, specific to either domain or anatomy are applied to guide the encoders in their respective feature extraction task. Additionally, any MI present in both feature maps is punished to further promote separate feature spaces. We validate the generalizability of the proposed domain-independent segmentation approach on several datasets with varying parameters and machines. Furthermore, we demonstrate the effectiveness of the proposed MI-SegNet serving as a pre-trained model by comparing it with state-of-the-art networks (The code is available at: https://github.com/yuan-12138/MI-SegNet).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Belghazi, M.I., et al.: Mutual information neural estimation. In: International Conference on Machine Learning, pp. 531–540. PMLR (2018)
Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)
Cha, J., Lee, K., Park, S., Chun, S.: Domain generalization by mutual-information regularization with pre-trained models. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision, ECCV 2022. LNCS, vol. 13683, pp. 440–457. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20050-2_26
Chen, C., Dou, Q., Chen, H., Qin, J., Heng, P.A.: Unsupervised bidirectional cross-modality adaptation via deeply synergistic image and feature alignment for medical image segmentation. IEEE Trans. Med. Imag. 39(7), 2494–2505 (2020)
Donsker, M.D., Varadhan, S.R.S.: Asymptotic evaluation of certain Markov process expectations for large time. IV. Commun. Pure Appl. Math. 36(2), 183–212 (1983)
Huang, D., Bi, Y., Navab, N., Jiang, Z.: Motion magnification in robotic sonography: enabling pulsation-aware artery segmentation. arXiv preprint arXiv:2307.03698 (2023)
Huang, X., Liu, M.-Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-image translation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 172–189. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_11
Huang, Y., et al.: Online Reflective learning for robust medical image segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention, MICCAI 2022. LNCS, vol. 13438, pp. 652–662. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16452-1_62
Jiang, Z., Duelmer, F., Navab, N.: DopUS-Net: quality-aware robotic ultrasound imaging based on doppler signal. IEEE Trans. Autom. Sci. Eng. (2023)
Kraskov, A., Stögbauer, H., Grassberger, P.: Estimating mutual information. Phys. Rev. E 69(6), 066138 (2004)
Lee, H.-Y., Tseng, H.-Y., Huang, J.-B., Singh, M., Yang, M.-H.: Diverse image-to-image translation via disentangled representations. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 36–52. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_3
Lezama, J.: Overcoming the disentanglement vs reconstruction trade-off via Jacobian supervision. In: International Conference on Learning Representations (2018)
Liu, X., Yang, C., You, J., Kuo, C.C.J., Kumar, B.V.: Mutual information regularized feature-level Frankenstein for discriminative recognition. IEEE Trans. Pattern Anal. Mach. Intell. 44(9), 5243–5260 (2021)
Meng, Q., et al.: Mutual information-based disentangled neural networks for classifying unseen categories in different domains: application to fetal ultrasound imaging. IEEE Trans. Med. Imag. 40(2), 722–734 (2020)
Ning, M., et al.: A new bidirectional unsupervised domain adaptation segmentation framework. In: Feragen, A., Sommer, S., Schnabel, J., Nielsen, M. (eds.) IPMI 2021. LNCS, vol. 12729, pp. 492–503. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78191-0_38
Peng, X., Huang, Z., Sun, X., Saenko, K.: Domain agnostic learning with disentangled representations. In: International Conference on Machine Learning, pp. 5102–5112. PMLR (2019)
Říha, K., Mašek, J., Burget, R., Beneš, R., Závodná, E.: Novel method for localization of common carotid artery transverse section in ultrasound images using modified Viola-Jones detector. Ultrasound Med. Biol. 39(10), 1887–1902 (2013)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Schlemper, J., et al.: Attention gated networks: learning to leverage salient regions in medical images. Med. Image Anal. 53, 197–207 (2019)
Song, J., et al.: Global and local feature reconstruction for medical image segmentation. IEEE Trans. Med. Imag. 41, 2273–2284 (2022)
Tirindelli, M., Eilers, C., Simson, W., Paschali, M., Azampour, M.F., Navab, N.: Rethinking ultrasound augmentation: a physics-inspired approach. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12908, pp. 690–700. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_66
Valanarasu, J.M.J., Oza, P., Hacihaliloglu, I., Patel, V.M.: Medical transformer: gated axial-attention for medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 36–46. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_4
Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)
Velikova, Y., Simson, W., Salehi, M., Azampour, M.F., Paprottka, P., Navab, N.: CACTUSS: common anatomical CT-US space for US examinations. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention, MICCAI 2022. LNCS, vol. 13433, pp. 492–501. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16437-8_47
Yang, X., et al.: Generalizing deep models for ultrasound image segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 497–505. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_57
Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep learning (still) requires rethinking generalization. Commun. ACM 64(3), 107–115 (2021)
Zhang, L., et al.: Generalizing deep learning for medical image segmentation to unseen domains via deep stacked transformation. IEEE Trans. Med. Imag. 39(7), 2531–2540 (2020)
Zhao, Q., et al.: A multi-modality ovarian tumor ultrasound image dataset for unsupervised cross-domain semantic segmentation. arXiv preprint arXiv:2207.06799 (2022)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bi, Y., Jiang, Z., Clarenbach, R., Ghotbi, R., Karlas, A., Navab, N. (2023). MI-SegNet: Mutual Information-Based US Segmentation for Unseen Domain Generalization. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14223. Springer, Cham. https://doi.org/10.1007/978-3-031-43901-8_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-43901-8_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43900-1
Online ISBN: 978-3-031-43901-8
eBook Packages: Computer ScienceComputer Science (R0)