[go: up one dir, main page]

Skip to main content

ACC-UNet: A Completely Convolutional UNet Model for the 2020s

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

This decade is marked by the introduction of Vision Transformer, a radical paradigm shift in broad computer vision. A similar trend is followed in medical imaging, UNet, one of the most influential architectures, has been redesigned with transformers. Recently, the efficacy of convolutional models in vision is being reinvestigated by seminal works such as ConvNext, which elevates a ResNet to Swin Transformer level. Deriving inspiration from this, we aim to improve a purely convolutional UNet model so that it can be on par with the transformer-based models, e.g., Swin-Unet or UCTransNet. We examined several advantages of the transformer-based UNet models, primarily long-range dependencies and cross-level skip connections. We attempted to emulate them through convolution operations and thus propose, ACC-UNet, a completely convolutional UNet model that brings the best of both worlds, the inherent inductive biases of convnets with the design decisions of transformers. ACC-UNet was evaluated on 5 different medical image segmentation benchmarks and consistently outperformed convnets, transformers, and their hybrids. Notably, ACC-UNet outperforms state-of-the-art models Swin-Unet and UCTransNet by \(2.64 \pm 2.54\%\) and \(0.45 \pm 1.61\%\) in terms of dice score, respectively, while using a fraction of their parameters (\(59.26\%\) and \(24.24\%\)). Our codes are available at https://github.com/kiharalab/ACC-UNet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Swin-UNet-based models were trained with SGD [9] for poor performance of Adam.

References

  1. Covid-19 ct segmentation dataset. https://medicalsegmentation.com/covid19/. Accessed 20 Aug 2022

  2. Ailiang, L., Xu, J., Jinxing, L., Guangming, L.: ConTrans: improving transformer with convolutional attention for medical image segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13435, pp. 297–307. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16443-9_29

    Chapter  Google Scholar 

  3. Al-Dhabyani, W., Gomaa, M., Khaled, H., Fahmy, A.: Dataset of breast ultrasound images. Data Brief 28, 104863 (2020)

    Google Scholar 

  4. Bernal, J., Sánchez, F.J., Fernández-Esparrach, G., Gil, D., Rodríguez, C., Vilariño, F.: WM-DOVA maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians. Comput. Med. Imaging Graph. 43, 99–111 (2015)

    Article  Google Scholar 

  5. Chen, J., et al.: TransUNet: transformers make strong encoders for medical image segmentation (2021)

    Google Scholar 

  6. Codella, N., et al.: Skin lesion analysis toward melanoma detection 2018: a challenge hosted by the international skin imaging collaboration (ISIC) (2019)

    Google Scholar 

  7. Dosovitskiy, A., et al.: An image is worth 16\(\times \)16 words: transformers for image recognition at scale. In: International Conference on Learning Representations (2021)

    Google Scholar 

  8. Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  9. Hu, C., Wang, Y., Joy, C., Dongsheng, J., Xiaopeng, Z., Qi, T., Manning, W.: Swin-Unet: unet-like pure transformer for medical image segmentation. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds.) ECCV 2022. LNCS, vol. 13803, pp. 205–218. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-25066-8_9

    Chapter  Google Scholar 

  10. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7132–7141. IEEE (2018)

    Google Scholar 

  11. Ibtehaz, N., Rahman, M.: MultiResUNet: rethinking the U-Net architecture for multimodal biomedical image segmentation. Neural Netw. 121, 74–87 (2020)

    Article  Google Scholar 

  12. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, vol. 37. pp. 448–456. JMLR.org (2015)

    Google Scholar 

  13. Jose, V.J.M., Patel, V.M.: UNeXt: MLP-based rapid medical image segmentation network. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13435, pp. 23–33. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16443-9_3

    Chapter  Google Scholar 

  14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2015)

    Google Scholar 

  15. Liu, Z., et al.: Swin transformer: hierarchical vis ion transformer using shifted windows. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9992–10002. IEEE (2021)

    Google Scholar 

  16. Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A ConvNet for the 2020s. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11966–11976. IEEE (2022)

    Google Scholar 

  17. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of the 30th International Conference on Machine Learning (2013)

    Google Scholar 

  18. Olabarriaga, S., Smeulders, A.: Interaction in the segmentation of medical images: a survey. Med. Image Anal. 5(2), 127–142 (2001)

    Article  Google Scholar 

  19. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  20. Sirinukunwattana, K., et al.: Gland segmentation in colon histology images: the glas challenge contest. Med. Image Anal. 35, 489–502 (2017)

    Article  Google Scholar 

  21. Tschandl, P., Rosendahl, C., Kittler, H.: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 5(1), 180161 (2018)

    Google Scholar 

  22. Wang, H., Cao, P., Wang, J., Zaiane, O.R.: UCTransNet: rethinking the skip connections in U-net from a channel-wise perspective with transformer. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no. 3, pp. 2441–2449 (2022)

    Google Scholar 

  23. Yang, J., Li, C., Dai, X., Gao, J.: Focal modulation networks (2022)

    Google Scholar 

  24. Ji, Y., et al.: Multi-compound transformer for accurate biomedical image segmentation. In: de Bruijn, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 326–336. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_31

    Chapter  Google Scholar 

  25. Zhou, S.K., et al.: A review of deep learning in medical imaging: imaging traits, technology trends, case studies with progress highlights, and future promises. Proc. IEEE 109(5), 820–838 (2021)

    Article  Google Scholar 

  26. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

  27. Ziheng, W., et al.: SMESwin Unet: merging CNN and transformer for medical image segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13435, pp. 517–526. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16443-9_50

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the National Institutes of Health (R01GM133840 and 3R01GM133840-02S1) and the National Science Foundation (CMMI1825941, MCB1925643, IIS2211598, DMS2151678, DBI2146026, and DBI2003635).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Kihara .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3083 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ibtehaz, N., Kihara, D. (2023). ACC-UNet: A Completely Convolutional UNet Model for the 2020s. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14222. Springer, Cham. https://doi.org/10.1007/978-3-031-43898-1_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43898-1_66

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43897-4

  • Online ISBN: 978-3-031-43898-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics