[go: up one dir, main page]

Skip to main content

Towards a Deep Reinforcement Learning Model of Master Bay Stowage Planning

  • Conference paper
  • First Online:
Computational Logistics (ICCL 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14239))

Included in the following conference series:

  • 759 Accesses

Abstract

Major liner shipping companies aim to solve the stowage planning problem by optimally allocating containers to vessel locations during a multi-port voyage. Due to a large variety of combinatorial aspects, a scalable algorithm to solve a representative problem is yet to be found. This paper will show that deep reinforcement learning can optimize a non-trivial master bay planning problem. Our experiments show that proximal policy optimization efficiently finds reasonable solutions, serving as preliminary evidence of the potential value of deep reinforcement learning in stowage planning. In future work, we will extend our architecture to address a full-featured master bay planning problem.

This work is partially sponsored by the Danish Maritime Fund under grant 2021-069.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: a next-generation hyperparameter optimization framework (2019). http://arxiv.org/abs/1907.10902

  2. Ambrosino, D., Anghinolfi, D., Paolucci, M., Sciomachen, A.: An experimental comparison of different heuristics for the master bay plan problem. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 314–325. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13193-6_27

    Chapter  Google Scholar 

  3. Ambrosino, D., Sciomachen, A., Tanfani, E.: Stowing a containership: the master bay plan problem. Transp. Res. Part A 38(2), 81–99 (2004). https://doi.org/10.1016/j.tra.2003.09.002, http://linkinghub.elsevier.com/retrieve/pii/S0965856403000892, http://www.sciencedirect.com/science/article/pii/S0965856403000892

  4. Avriel, M., Penn, M., Shpirer, N., Witteboon, S.: Stowage planning for container ships to reduce the number of shifts. Ann. Oper. Res. 76(1-4), 55–71 (1998). http://search.ebscohost.com/login.aspx?direct=true &db=bth &AN=18925445 &site=ehost-live, http://link.springer.com/article/10.1023/A:1018956823693

  5. Azevedo, A., Cassilda Maria, R., de Sena, G.J., Chaves, A.A., Neto, L.L.S., Moretti, A.C.: Solving the 3D container ship loading planning problem by representation by rules and meta-heuristics. Int. J. Data Anal. Tech. Strategies 6(3), 228–260 (2014). https://doi.org/10.1504/IJDATS.2014.063060

  6. Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter optimization. In: NIPS 2011: Proceedings of the 24th International Conference on Neural Information Processing Systems, pp. 2546–2554 (2011). https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf

  7. Bilican, M.S., Evren, R., Karatas, M.: A mathematical model and two-stage heuristic for the container stowage planning problem with stability parameters. IEEE Access 8, 113392–113413 (2020). https://doi.org/10.1109/ACCESS.2020.3003557

    Article  Google Scholar 

  8. Botter, R., Brinati, M.: Stowage container planning: a model for getting an optimal solution. Comput. Appl. Autom. Shipyard Oper. Ship Design VII(C), 217–228 (1992)

    Google Scholar 

  9. Chao, S.L., Lin, P.H.: Minimizing overstowage in master bay plans of large container ships. Maritime Econ. Logist. 23(1), 71–93 (2021). https://doi.org/10.1057/s41278-019-00126-6

  10. Delgado, A., Jensen, R.M., Guilbert, N.: A placement heuristic for a commercial decision support system for container vessel stowage. In: 38th Latin America Conference on Informatics, CLEI 2012 - Conference Proceedings (2012). https://doi.org/10.1109/CLEI.2012.6427181

  11. Ding, D., Chou, M.C.: Stowage planning for container ships: a heuristic algorithm to reduce the number of shifts. Eur. J. Oper. Res. (2015). https://doi.org/10.1016/j.ejor.2015.03.044, http://linkinghub.elsevier.com/retrieve/pii/S0377221715002660

  12. Dubrovsky, O., Levitin, G., Penn, M.: A genetic algorithm with a compact solution encoding for the container ship stowage problem. J. Heuristics 8(6), 585–599 (2002). https://doi.org/10.1023/A:1020373709350, http://link.springer.com/article/10.1023/A:1020373709350

  13. Engstrom, L., et al.: Implementation matters in deep policy gradients: a case study on PPO and TRPO (2020). http://arxiv.org/abs/2005.12729

  14. Foa, S., Coppola, C., Grani, G., Palagi, L.: Solving the vehicle routing problem with deep reinforcement learning (2022). http://arxiv.org/abs/2208.00202

  15. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://www.deeplearningbook.org

  16. Hamedi, M.: Containership load planning with crane operations. Ph.D. thesis, University of Maryland (2011)

    Google Scholar 

  17. Hottung, A., Kwon, Y.D., Tierney, K.: Efficient active search for combinatorial optimization problems. In: International Conference on Learning Representations 2022 (2021). http://arxiv.org/abs/2106.05126

  18. Jensen, R.M., Pacino, D., Ajspur, M.L., Vesterdal, C.: Container vessel stowage planning. Weilbach (2018)

    Google Scholar 

  19. Kebedow, K.G., Oppen, J.: Including containers with dangerous goods in the slot planning problem. In: 2019 Proceedings of the International Conference on Industrial Engineering and Operations Management, pp. 225–232 (2019)

    Google Scholar 

  20. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 2015 International Conference on Learning Representations (2014). http://arxiv.org/abs/1412.6980

  21. Korach, A., Brouer, B.D., Jensen, R.M.: Matheuristics for slot planning of container vessel bays. Eur. J. Oper. Res. 282(3), 873–885 (2020). https://doi.org/10.1016/j.ejor.2019.09.042

    Article  Google Scholar 

  22. Kwon, Y.D., Choo, J., Kim, B., Yoon, I., Gwon, Y., Min, S.: POMO: policy optimization with multiple optima for reinforcement learning (2020). https://doi.org/10.48550/ARXIV.2010.16011, https://arxiv.org/abs/2010.16011

  23. Larsen, R., Pacino, D.: A heuristic and a benchmark for the stowage planning problem. Maritime Econ. Logist. 23(1), 94–122 (2021). https://doi.org/10.1057/s41278-020-00172-5

    Article  Google Scholar 

  24. Mirhoseini, A., et al.: A graph placement methodology for fast chip design. Nature 594(7862), 207–212 (2021). https://doi.org/10.1038/s41586-021-03544-w

    Article  Google Scholar 

  25. Mnih, V., et al.: Playing Atari with Deep Reinforcement Learning (2013)

    Google Scholar 

  26. Pacino, D.: An LNS approach for container stowage multi-port master planning. In: Computational Logistics, pp. 35–44 (2013). https://doi.org/10.1007/978-3-642-41019-2_3, http://link.springer.com/10.1007/978-3-642-41019-2_3

  27. Pacino, D.: Crane intensity and block stowage strategies in stowage planning. In: Cerulli, R., Raiconi, A., Voß, S. (eds.) ICCL 2018. LNCS, vol. 11184, pp. 191–206. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00898-7_12

    Chapter  Google Scholar 

  28. Pacino, D., Delgado, A., Jensen, R.M., Bebbington, T.: Fast generation of near-optimal plans for eco-efficient stowage of large container vessels. In: Böse, J.W., Hu, H., Jahn, C., Shi, X., Stahlbock, R., Voß, S. (eds.) ICCL 2011. LNCS, vol. 6971, pp. 286–301. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24264-9_22

    Chapter  Google Scholar 

  29. Pacino, D., Jensen, R.M.: A 3-phase randomized constraint based local search algorithm for stowing under deck locations of container vessel bays (2010). https://en.itu.dk/-/media/EN/Research/About-ITU-Research/Technical-Reports/2010/ITU-TR-2010-123-pdf

  30. Parreño-Torres, C., Çalık, H., Alvarez-Valdes, R., Ruiz, R.: Solving the generalized multi-port container stowage planning problem by a matheuristic algorithm. Comput. Oper. Res. 133, 105383 (2021). https://doi.org/10.1016/j.cor.2021.105383

  31. Roberti, R., Pacino, D.: A decomposition method for finding optimal container stowage plans. Transp. Sci. 52(6), 1444–1462 (2018). https://doi.org/10.1287/trsc.2017.0795

    Article  Google Scholar 

  32. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms (2017). http://arxiv.org/abs/1707.06347

  33. Shen, Y., Zhao, N., Xia, M., Du, X.: A deep Q-learning network for ship stowage planning problem. Pol. Maritime Res. 24(S3), 102–109 (2017). https://doi.org/10.1515/pomr-2017-0111

    Article  Google Scholar 

  34. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (2018)

    Google Scholar 

  35. Tierney, K., Pacino, D., Jensen, R.M.: On the complexity of container stowage planning problems. Discrete Appl. Math. 169, 225–230 (2014). https://doi.org/10.1016/j.dam.2014.01.005, http://dx.doi.org/10.1016/j.dam.2014.01.005

  36. van Twiller, J., Sivertsen, A., Pacino, D., Jensen, R.M.: Literature survey on the container stowage planning problem. Under review (2023)

    Google Scholar 

  37. Wilson, I.D., Roach, P.A.: Container stowage planning: a methodology for generating computerised solutions. J. Oper. Res. Soc. 51(11), 1248–1255 (2000). https://doi.org/10.1057/palgrave.jors.2601022, https://www.tandfonline.com/doi/full/10.1057/palgrave.jors.2601022

  38. Zhao, N., Guo, Y., Xiang, T., Xia, M., Shen, Y., Mi, C.: Container ship stowage based on Monte Carlo tree search. J. Coastal Res. 83, 540–547 (2018). https://doi.org/10.2112/SI83-090.1

    Article  Google Scholar 

  39. Zhu, H., Ji, M., Guo, W.: Integer linear programming models for the containership stowage problem. Math. Probl. Eng. 2020 (2020). https://doi.org/10.1155/2020/4382745

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaike van Twiller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

van Twiller, J., Grbic, D., Jensen, R.M. (2023). Towards a Deep Reinforcement Learning Model of Master Bay Stowage Planning. In: Daduna, J.R., Liedtke, G., Shi, X., Voß, S. (eds) Computational Logistics. ICCL 2023. Lecture Notes in Computer Science, vol 14239. Springer, Cham. https://doi.org/10.1007/978-3-031-43612-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43612-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43611-6

  • Online ISBN: 978-3-031-43612-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics