[go: up one dir, main page]

Skip to main content

On Using rPPG Signals for DeepFake Detection: A Cautionary Note

  • Conference paper
  • First Online:
Image Analysis and Processing – ICIAP 2023 (ICIAP 2023)

Abstract

An experimental analysis is proposed concerning the use of physiological signals, specifically remote Photoplethysmography (rPPG), as a potential means for detecting Deepfakes (DF). The study investigates the effects of different variables, such as video compression and face swap quality, on rPPG information extracted from both original and forged videos. The experiments aim to understand the impact of face forgery procedures on remotely-estimated cardiac information, how this effect interacts with other variables, and how rPPG-based DF detection accuracy is affected by these quantities. Preliminary results suggest that cardiac information in some cases (e.g. uncompressed videos) may have a limited role in discriminating real videos from forged ones, but the effects of other physiological signals cannot be discounted. Surprisingly, heart rate related frequencies appear to deliver a significant contribution to the DF detection task in compressed videos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/deepfakes/faceswap.

  2. 2.

    https://github.com/phuselab/pyVHR.

References

  1. Lee, S.-H., Yun, G.-E., Lim, M.Y., Lee, Y.K.: A study on effective use of bpm information in deepfake detection. In: 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 425–427. IEEE (2021)

    Google Scholar 

  2. Lee, D.: Deepfake Salvador Dalí takes selfies with museum visitors. The Verge (2019)

    Google Scholar 

  3. Bursic, S., D’Amelio, A., Granato, M., Grossi, G., Lanzarotti, R.: A quantitative evaluation framework of video de-identification methods. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 6089–6095. IEEE (2021)

    Google Scholar 

  4. Mirsky, Y., Lee, W.: The creation and detection of deepfakes: a survey. ACM Comput. Surv. (CSUR) 54(1), 1–41 (2021)

    Article  Google Scholar 

  5. Suwajanakorn, S., Seitz, S.M., Kemelmacher-Shlizerman, I.: Synthesizing obama: learning lip sync from audio. ACM Trans. Graph. (ToG) 36(4), 1–13 (2017)

    Article  Google Scholar 

  6. Tolosana, R., Vera-Rodriguez, R., Fierrez, J., Morales, A., Ortega-Garcia, J.: Deepfakes and beyond: a survey of face manipulation and fake detection. Inf. Fusion 64, 131–148 (2020)

    Article  Google Scholar 

  7. Nguyen, T.T., Nguyen, C.M., Nguyen, D.T., Nguyen, D.T., Nahavandi, S.: Deep learning for deepfakes creation and detection: a survey. arXiv preprint arXiv:1909.11573 (2019)

  8. McDuff, D.: Camera measurement of physiological vital signs. ACM Comput. Surv. 55(9), 1–40 (2023)

    Article  Google Scholar 

  9. Boccignone, G., Conte, D., Cuculo, V., D’Amelio, A., Grossi, G., Lanzarotti, R.: An open framework for remote-PPG methods and their assessment. IEEE Access 8, 216083–216103 (2020)

    Article  Google Scholar 

  10. Boccignone, G., et al.: pyvhr: a python framework for remote photoplethysmography. PeerJ Comput. Sci. 8, e929 (2022)

    Article  Google Scholar 

  11. McDuff, D.J., Blackford, E.B., Estepp, J.R.: The impact of video compression on remote cardiac pulse measurement using imaging photoplethysmography. In: 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017), pp. 63–70. IEEE (2017)

    Google Scholar 

  12. Qi, H., et al.: DeepRhythm: exposing deepfakes with attentional visual heartbeat rhythms. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 4318–4327 (2020)

    Google Scholar 

  13. Liang, J., Deng, W.: Identifying rhythmic patterns for face forgery detection and categorization. In: 2021 IEEE International Joint Conference on Biometrics (IJCB), pp. 1–8 (2021)

    Google Scholar 

  14. Hernandez-Ortega, J., Tolosana, R., Fierrez, J., Morales, A.: DeepFakesON-Phys: deepfakes detection based on heart rate estimation. arXiv preprint arXiv:2010.00400 (2020)

  15. Ciftci, U.A., Demir, I., Yin, L.: FakeCatcher: detection of synthetic portrait videos using biological signals. IEEE Trans. Pattern Anal. Mach. Intell. (2020)

    Google Scholar 

  16. Ciftci, U.A., Demir, I., Yin, L.: How do the hearts of deep fakes beat? deep fake source detection via interpreting residuals with biological signals. In: 2020 IEEE International Joint Conference on Biometrics (IJCB), pp. 1–10. IEEE (2020)

    Google Scholar 

  17. Boccignone, G., et al.: Deepfakes have no heart: a simple rppg-based method to reveal fake videos. In: Image Analysis and Processing-ICIAP 2022: 21st International Conference, Lecce, Italy, 23–27 May 2022, Proceedings, Part II, pp. 186–195. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-06430-2_16

  18. Liang, J., Deng, W.: Identifying rhythmic patterns for face forgery detection and categorization. In: 2021 IEEE International Joint Conference on Biometrics (IJCB), pp. 1–8. IEEE (2021)

    Google Scholar 

  19. Wu, J., Zhu, Y., Jiang, X., Liu, Y., Lin, J.: Local attention and long-distance interaction of rppg for deepfake detection. Visual Comput., 1–12 (2023)

    Google Scholar 

  20. Rössler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., Nießner, M.: FaceForensics++: learning to detect manipulated facial images. In: International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  21. Dolhansky, B., et al.: The deepfake detection challenge (DFDC) dataset. arXiv preprint arXiv:2006.07397 (2020)

  22. Li, Y., Yang, X., Sun, P., Qi, H., Lyu, S.: Celeb-df: a large-scale challenging dataset for deepfake forensics. In: IEEE Conference on Computer Vision and Patten Recognition (CVPR) (2020)

    Google Scholar 

  23. Jiang, L., Li, R., Wu, W., Qian, C., Loy, C.C.: DeeperForensics-1.0: a large-scale dataset for real-world face forgery detection. In: CVPR (2020)

    Google Scholar 

  24. Bobbia, S., Macwan, R., Benezeth, Y., Mansouri, A., Dubois, J.: Unsupervised skin tissue segmentation for remote photoplethysmography. Pattern Recogn. Lett. 124, 82–90 (2019)

    Article  Google Scholar 

  25. Liu, M.-Y., Breuel, T., Kautz, J.: Unsupervised image-to-image translation networks. Adv. Neural Inf. Process. Syst. 30, 1–9 (2017)

    Google Scholar 

  26. Boccignone, G., D’Amelio, A., Ghezzi, O., Grossi, G., Lanzarotti, R.: An evaluation of non-contact photoplethysmography-based methods for remote respiratory rate estimation. Sensors 23(7), 3387 (2023)

    Article  Google Scholar 

  27. Verkruysse, W., Svaasand, L.O., Nelson, J.S.: Remote plethysmographic imaging using ambient light. Opt. Express 16(26), 21434–21445 (2008)

    Article  Google Scholar 

  28. Wang, W., den Brinker, A.C., Stuijk, S., De Haan, G.: Algorithmic principles of remote PPG. IEEE Trans. Biomed. Eng. 64(7), 1479–1491 (2016)

    Article  Google Scholar 

  29. De Haan, G., Jeanne, V.: Robust pulse rate from chrominance-based rPPG. IEEE Trans. Biomed. Eng. 60(10), 2878–2886 (2013)

    Article  Google Scholar 

  30. Kruschke, J.K.: Bayesian estimation supersedes the t test. J. Exp. Psychol. Gener. 142(2), 573 (2013)

    Article  Google Scholar 

  31. Benavoli, A., Corani, G., Demšar, J., Zaffalon, M.: Time for a change: a tutorial for comparing multiple classifiers through bayesian analysis. J. Mach. Learn. Res. 18(1), 2653–2688 (2017)

    MathSciNet  MATH  Google Scholar 

  32. Benavoli, A., Corani, G., Mangili, F., Zaffalon, M., Ruggeri, F.: A Bayesian Wilcoxon signed-rank test based on the Dirichlet process. In: International Conference on Machine Learning, pp. 1026–1034. PMLR (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro D’Amelio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

D’Amelio, A. et al. (2023). On Using rPPG Signals for DeepFake Detection: A Cautionary Note. In: Foresti, G.L., Fusiello, A., Hancock, E. (eds) Image Analysis and Processing – ICIAP 2023. ICIAP 2023. Lecture Notes in Computer Science, vol 14234. Springer, Cham. https://doi.org/10.1007/978-3-031-43153-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43153-1_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43152-4

  • Online ISBN: 978-3-031-43153-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics