[go: up one dir, main page]

Skip to main content

On Estimating Derivatives of Input Signals in Biochemistry

  • Conference paper
  • First Online:
Computational Methods in Systems Biology (CMSB 2023)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 14137))

Included in the following conference series:

  • 301 Accesses

Abstract

The online estimation of the derivative of an input signal is widespread in control theory and engineering. In the realm of chemical reaction networks (CRN), this raises however a number of specific issues on the different ways to achieve it. A CRN pattern for implementing a derivative block has already been proposed for the PID control of biochemical processes, and proved correct using Tikhonov’s limit theorem. In this paper, we give a detailed mathematical analysis of that CRN, thus clarifying the computed quantity and quantifying the error done as a function of the reaction kinetic parameters. In a synthetic biology perspective, we show how this can be used to compute online functions with CRNs augmented with an error correcting delay for derivatives. In the systems biology perspective, we give the list of models in BioModels containing (in the sense of subgraph epimorphisms) the core derivative CRN, most of which being models of oscillators and control systems in the cell, and discuss in detail two such examples: one model of the circadian clock and one model of a bistable switch.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We also explore in Figs. 2D and 3C what a non analyticity of \(X_\text {ext}\) imply for our model.

  2. 2.

    A species (resp. reaction) node can only be merged with another species (resp. reaction) node and the resulting node inherits of all the incoming and outcomming edges of the two nodes.

References

  1. Alexis, E., Schulte, C.C.M., Cardelli, L., Papachristodoulou, A.: Biomolecular mechanisms for signal differentiation. Iscience 24(12), 103462 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Becker-Weimann, S., Wolf, J., Herzel, H., Kramer, A.: Modeling feedback loops of the mammalian circadian oscillator. Biophys. J . 87(5), 3023–3034 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Briat, C., Gupta, A., Khammash, M.: Antithetic integral feedback ensures robust perfect adaptation in noisy biomolecular networks. Cell Syst. 2(1), 15–26 (2016)

    Article  CAS  PubMed  Google Scholar 

  4. Calzone, L., Fages, F., Soliman, S.: BIOCHAM: an environment for modeling biological systems and formalizing experimental knowledge. Bioinformatics 22(14), 1805–1807 (2006)

    Article  CAS  PubMed  Google Scholar 

  5. Chevalier, M., Gómez-Schiavon, M., Ng, A.H., El-Samad, H.: Design and analysis of a proportional-integral-derivative controller with biological molecules. Cell Syst. 9(4), 338–353 (2019)

    Article  CAS  PubMed  Google Scholar 

  6. Courbet, A., Amar, P., Fages, F., Renard, E., Molina, F.: Computer-aided biochemical programming of synthetic microreactors as diagnostic devices. Mol. Syst. Biol. 14(4) (2018)

    Google Scholar 

  7. Érdi, P., Tóth, J.: Mathematical Models of Chemical Reactions: Theory and Applications of Deterministic and Stochastic Models. Nonlinear Science: Theory and Applications. Manchester University Press (1989)

    Google Scholar 

  8. Fages, F., Le Guludec, G., Bournez, O., Pouly, A.: Strong Turing completeness of continuous chemical reaction networks and compilation of mixed analog-digital programs. In: Feret, J., Koeppl, H. (eds.) CMSB 2017. LNCS, vol. 10545, pp. 108–127. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67471-1_7

    Chapter  Google Scholar 

  9. Fages, F., Gay, S., Soliman, S.: Inferring reaction systems from ordinary differential equations. Theor. Comput. Sci. 599, 64–78 (2015)

    Article  Google Scholar 

  10. Fages, F., Soliman, S.: Abstract interpretation and types for systems biology. Theor. Comput. Sci. 403(1), 52–70 (2008)

    Article  Google Scholar 

  11. Feinberg, M.: Mathematical aspects of mass action kinetics. In: Lapidus, L., Amundson, N.R. (eds.) Chemical Reactor Theory: A Review, chapter 1, pp. 1–78. Prentice-Hall, Upper Saddle River (1977)

    Google Scholar 

  12. Gay, S., Fages, F., Martinez, T., Soliman, S., Solnon, C.: On the subgraph epimorphism problem. Discret. Appl. Math. 162, 214–228 (2014)

    Article  Google Scholar 

  13. Gay, S., Soliman, S., Fages, F.: A graphical method for reducing and relating models in systems biology. Bioinformatics 26(18), i575–i581 (2010). special issue ECCB’10

    Google Scholar 

  14. Hemery, M., Fages, F.: Algebraic biochemistry: a framework for analog online computation in cells. In: Petre, I., Păun, A. (eds.) CMSB 2022. LNCS, vol. 13447, pp. 3–20. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15034-0_1

    Chapter  Google Scholar 

  15. Hemery, M., Fages, F., Soliman, S.: On the complexity of quadratization for polynomial differential equations. In: Abate, A., Petrov, T., Wolf, V. (eds.) CMSB 2020. LNCS, vol. 12314, pp. 120–140. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60327-4_7

    Chapter  Google Scholar 

  16. Hemery, M., Fages, F., Soliman, S.: Compiling elementary mathematical functions into finite chemical reaction networks via a polynomialization algorithm for ODEs. In: Cinquemani, E., Paulevé, L. (eds.) CMSB 2021. LNCS, vol. 12881, pp. 74–90. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85633-5_5

    Chapter  Google Scholar 

  17. Huang, C.-Y., Ferrell, J.E.: Ultrasensitivity in the mitogen-activated protein kinase cascade. PNAS 93(19), 10078–10083 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kitano, H.: Systems biology: a brief overview. Science 295(5560), 1662–1664 (2002)

    Article  CAS  PubMed  Google Scholar 

  19. le Novère, N., et al.: BioModels database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acid Res. 1(34), D689–D691 (2006)

    Article  Google Scholar 

  20. Myhill, J.: A recursive function defined on a compact interval and having a continuous derivative that is not recursive. Mich. Math. J. 18(2), 97–98 (1971)

    Article  Google Scholar 

  21. Oishi, K., Klavins, E.: Biomolecular implementation of linear i/o systems. IET Syst. Biol. 5(4), 252–260 (2011)

    Article  CAS  PubMed  Google Scholar 

  22. Shannon, C.E.: Mathematical theory of the differential analyser. J. Math. Phys. 20, 337–354 (1941)

    Article  Google Scholar 

  23. Vasic, M., Soloveichik, D., Khurshid, S.: CRN++: molecular programming language. In: Doty, D., Dietz, H. (eds.) DNA 2018. LNCS, vol. 11145, pp. 1–18. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00030-1_1

    Chapter  Google Scholar 

  24. Whitby, M., Cardelli, L., Kwiatkowska, M., Laurenti, L., Tribastone, M., Tschaikowski, M.: Pid control of biochemical reaction networks. IEEE Trans. Autom. Control 67(2), 1023–1030 (2021)

    Article  Google Scholar 

  25. Yao, G., Lee, T.J., Mori, S., Nevins, J.R., You, L.: A bistable rb-e2f switch underlies the restriction point. Nat. Cell Biol. 10(4), 476–482 (2008)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work benefited from ANR-20-CE48-0002 \(\delta \)ifference project grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Fages .

Editor information

Editors and Affiliations

Appendix: Computation of Integration with a Delay

Appendix: Computation of Integration with a Delay

To prove that the drift of the output is a direct consequence of the delay, we first compute the input and the approximate derivative for our choice of input:

$$\begin{aligned} \begin{aligned} x(t)&= 1+\sin (t) \\ x'(t-\tau )&= \cos (t-\tau ) \\&= \cos (t) + \tau \sin (t) + o(\tau ^2) \end{aligned} \end{aligned}$$
(18)

Then we can compute the output up to the first order:

$$\begin{aligned} \begin{aligned} y(t)&= \int 2 x(s) x'(s-\tau ) ds \\&= \int 2 \left( 1+\sin (s)\right) \cos (s) ds + \int 2 \tau (\sin (s)+\sin ^2(s)) ds \\&= \left( 1+\sin (t)\right) ^2 + 2 \tau \int \sin (s)+\sin ^2(s) ds \\ y(t)&\simeq \left( 1+\sin (t)\right) ^2 + \tau t \end{aligned} \end{aligned}$$
(19)

Then, to correct the observed drift, we propose to introduce a delay signal and use it in the computation to produce the output species \(Y_+\) and \(Y_-\), with the following CRN:

$$\begin{aligned} \begin{aligned} X_\text {ext}&\xrightarrow {k_\text {diff}} X_\text {in},&\quad X_\text {in}&\xrightarrow {k_\text {diff}} X_\text {ext}, \\ X_\text {in}&\xrightarrow {k} X_\text {in}+ X_\text {delay},&\quad X_\text {delay}&\xrightarrow {k} \emptyset , \\ X_\text {ext}&\xrightarrow {k_\text {diff}k} X_\text {ext}+ D_+&\quad D_+&\xrightarrow {k} \emptyset \\ X_\text {in}&\xrightarrow {k_\text {diff}k} X_\text {in}+ D_-&\quad D_-&\xrightarrow {k} \emptyset \\ X_\text {delay}+ D_+&\xrightarrow {2} X_\text {delay}+ D_+ + Y_+&\quad X_\text {delay}+ D_-&\xrightarrow {2} X_\text {delay}+ D_- + Y_- \\ D_+ + D_-&\xrightarrow {\text {fast}} \emptyset&\quad Y_+ + Y_-&\xrightarrow {\text {fast}} \emptyset \\ \end{aligned} \end{aligned}$$
(20)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hemery, M., Fages, F. (2023). On Estimating Derivatives of Input Signals in Biochemistry. In: Pang, J., Niehren, J. (eds) Computational Methods in Systems Biology. CMSB 2023. Lecture Notes in Computer Science(), vol 14137. Springer, Cham. https://doi.org/10.1007/978-3-031-42697-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42697-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42696-4

  • Online ISBN: 978-3-031-42697-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics