[go: up one dir, main page]

Skip to main content

Computer-Aided Generation of Assurance Cases

  • Conference paper
  • First Online:
Computer Safety, Reliability, and Security. SAFECOMP 2023 Workshops (SAFECOMP 2023)

Abstract

Assurance cases (ACs) have gained attention in the aerospace, medical, and other heavily-regulated industries as a means for providing structured arguments on why a product is dependable (i.e., safe, secure, etc.) for its intended application. Challenges in AC construction stem from the complexity and uniqueness of the designs, the heterogeneous nature of the required supporting evidence, and the need to assess the quality of an argument. We present an automated AC generation framework that facilitates the construction, validation, and confidence assessment of ACs based on dependability argument patterns and confidence patterns capturing domain knowledge. The ACs are instantiated with a system’s specification and evaluated based on the available design and verification evidence. Aerospace case studies illustrate the framework’s effectiveness, efficiency, and scalability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holloway, C.: Understanding the overarching properties, ser. NASA technical memorandum (2019)

    Google Scholar 

  2. Rushby, J.: The interpretation and evaluation of assurance cases. Computer Science Laboratory, SRI International, Menlo Park, CA, Technical report. SRI-CSL-15-01 (2015)

    Google Scholar 

  3. TACW Group: Goal structuring notation community standard (version 3) (2021)

    Google Scholar 

  4. Hawkins, R., Habli, I., et al.: Weaving an assurance case from design: a model-based approach. In: International Symposium High Assurance Systems Engineering, pp. 110–117 (2015)

    Google Scholar 

  5. Rushby, J.: Formalism in safety cases. In: Dale, C., Anderson, T. (eds.) Making Systems Safer, pp. 3–17. Springer, London (2010). https://doi.org/10.1007/978-1-84996-086-1_1

    Chapter  Google Scholar 

  6. Bloomfield, R., Rushby, J.: Assurance 2.0. arXiv preprint arXiv:2004.10474 (2020)

  7. Denney, E., Pai, G., Pohl, J.: AdvoCATE: an assurance case automation toolset. In: Ortmeier, F., Daniel, P. (eds.) SAFECOMP 2012. LNCS, vol. 7613, pp. 8–21. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33675-1_2

    Chapter  Google Scholar 

  8. Barry, M.R.: CertWare: a workbench for safety case production and analysis. In: Aerospace conference, pp. 1–10 (2011)

    Google Scholar 

  9. Matsuno, Y.: D-case editor: a typed assurance case editor. University of Tokyo (2011)

    Google Scholar 

  10. Adelard LLP. Assurance and safety case environment (ASCE) (2011). https://www.adelard.com/asce/

  11. Sljivo, I., Gallina, B., Carlson, J., Hansson, H., Puri, S.: Tool-supported safety-relevant component reuse: from specification to argumentation. In: Casimiro, A., Ferreira, P.M. (eds.) Ada-Europe 2018. LNCS, vol. 10873, pp. 19–33. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92432-8_2

    Chapter  Google Scholar 

  12. Šljivo, I., Uriagereka, G.J., et al.: Guiding assurance of architectural design patterns for critical applications. J. Syst. Architect. 110, 101765 (2020)

    Article  Google Scholar 

  13. de la Vara, J.L., Ruiz, A., Blondelle, G.: Assurance and certification of cyber-physical systems: the AMASS open source ecosystem. J. Syst. Softw. 171, 110812 (2021). https://www.sciencedirect.com/science/article/pii/S0164121220302120

  14. Nešić, D., Nyberg, M., Gallina, B.: Product-line assurance cases from contract-based design. J. Syst. Softw. 176, 110922 (2021)

    Article  Google Scholar 

  15. Neapolitan, R.: Learning Bayesian Networks, ser. Artificial Intelligence. Pearson Prentice Hall (2004)

    Google Scholar 

  16. Cârlan, C., Nigam, V., et al.: ExplicitCase: tool-support for creating and maintaining assurance arguments integrated with system models. In: International Symposium on Software Reliability Engineering Workshops (ISSREW), pp. 330–337 (2019)

    Google Scholar 

  17. Ramakrishna, S., Hartsell, C., et al.: A methodology for automating assurance case generation. arXiv preprint arXiv:2003.05388 (2020)

  18. Graydon, P.J., Holloway, C.M.: An investigation of proposed techniques for quantifying confidence in assurance arguments. Saf. Sci. 92, 53–65 (2017)

    Article  Google Scholar 

  19. Oh, C., Naik, N., Daw, Z., Wang, T.E., Nuzzo, P.: ARACHNE: automated validation of assurance cases with stochastic contract networks. In: Trapp, M., Saglietti, F., Spisländer, M., Bitsch, F. (eds.) SAFECOMP 2022. LNCS, vol. 13414, pp. 65–81. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-14835-4_5

    Chapter  Google Scholar 

  20. Holloway, C.M.: Explicate’78: uncovering the implicit assurance case in DO-178C. In: Safety-Critical Systems Symposium (2015)

    Google Scholar 

  21. The GSN Working Group Online, Goal Structuring Notation. http://www.goalstructuringnotation.info/

  22. Adelard LLP. Claims, Arguments and Evidence (CAE) (2019). https://www.adelard.com/asce/choosing-asce/cae.html. Accessed 23 Oct 2020

  23. Fujita, H., Matsuno, Y., et al.: DS-Bench toolset: tools for dependability benchmarking with simulation and assurance. In: International Conference on Dependable Systems and Networks, pp. 1–8. IEEE (2012)

    Google Scholar 

  24. Benveniste, A., Caillaud, B., et al.: Contracts for system design. Found. Trends Electron. Des. Autom. 12(2–3), 124–400 (2018)

    Article  Google Scholar 

  25. Bauer, S.S., et al.: Moving from specifications to contracts in component-based design. In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 43–58. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28872-2_3

    Chapter  Google Scholar 

  26. Gacek, A., Backes, J., et al.: Resolute: an assurance case language for architecture models. In: SIGAda Annual Conference on High Integrity Language Technology, pp. 19–28 (2014)

    Google Scholar 

  27. Wang, T.E., Daw, Z., Nuzzo, P., Pinto, A.: Hierarchical contract-based synthesis for assurance cases. In: Deshmukh, J.V., Havelund, K., Perez, I. (eds.) NFM 2022. LNCS, vol. 13260, pp. 175–192. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06773-0_9

    Chapter  Google Scholar 

  28. Jensen, F.V.: Introduction to Bayesian Networks, 1st edn. Springer, Heidelberg (1996)

    Google Scholar 

  29. Verbert, K., Babuška, R., De Schutter, B.: Bayesian and Dempster-Shafer reasoning for knowledge-based fault diagnosis–a comparative study. Eng. Appl. Artif. Intell. 60, 136–150 (2017)

    Article  Google Scholar 

  30. ArduPilot Dev Team. Arducopter (2023). https://ardupilot.org/copter/

  31. Shankar, N., Bhatt, D., et al.: DesCert: Design for certification. arXiv preprint arXiv:2203.15178 (2022)

  32. Bhatt, D., Ren, H., Murugesan, A., Biatek, J., Varadarajan, S., Shankar, N.: Requirements-driven model checking and test generation for comprehensive verification. In: Deshmukh, J.V., Havelund, K., Perez, I. (eds.) NFM 2022. LNCS, vol. 13260, pp. 576–596. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06773-0_31

    Chapter  Google Scholar 

Download references

Acknowledgments

Distribution statement “A” (approved for public release, distribution unlimited). This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA), contract FA875020C0508. The views, opinions, or findings expressed are those of the authors and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government. The authors wish to also acknowledge the partial support by the National Science Foundation (NSF) under Awards 1846524 and 2139982, the Office of Naval Research (ONR) under Award N00014-20-1-2258, the Defense Advanced Research Projects Agency (DARPA) under Award HR00112010003, and the Okawa Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy E. Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, T.E. et al. (2023). Computer-Aided Generation of Assurance Cases. In: Guiochet, J., Tonetta, S., Schoitsch, E., Roy, M., Bitsch, F. (eds) Computer Safety, Reliability, and Security. SAFECOMP 2023 Workshops. SAFECOMP 2023. Lecture Notes in Computer Science, vol 14182. Springer, Cham. https://doi.org/10.1007/978-3-031-40953-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40953-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40952-3

  • Online ISBN: 978-3-031-40953-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics