Abstract
The recent pandemic Coronavirus Disease 2019 (COVID-19) led to an unexpectedly imposed social isolation, causing an enormous disruption of daily routines for the global community and posing a potential risk to the mental well-being of individuals. However, resources for supporting people with mental health issues remain extremely limited, raising the matter of providing trustworthy and relevant psychotherapeutic content publicly available. To bridge this gap, this paper investigates the application of information retrieval in the mental health domain to automatically filter therapeutical content by estimated quality. We have used AnnoMI, an expert annotated counseling dataset composed of high- and low-quality Motivational Interviewing therapy sessions. First, we applied state-of-the-art information retrieval models to evaluate their applicability in the psychological domain for ranking therapy sessions by estimated quality. Then, given the sensitive psychological information associated with each therapy session, we analyzed the potential risk of unfair outcomes across therapy topics, i.e., mental issues, under a common fairness definition. Our experimental results show that the employed ranking models are reliable for systematically ranking high-quality content above low-quality one, while unfair outcomes across topics are model-dependent and associated low-quality content distribution. Our findings provide preliminary insights for applying information retrieval in the psychological domain, laying the foundations for incorporating publicly available high-quality resources to support mental health. Source code available at https://github.com/jackmedda/BIAS-FairAnnoMI.
V. Kumar and G. Medda—These authors contributed equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
Data available at https://github.com/vsrana-ai/AnnoMI.
- 2.
References
Abd-Alrazaq, A.A., Alajlani, M., Ali, N., Denecke, K., Bewick, B.M., Househ, M.: Perceptions and opinions of patients about mental health chatbots: scoping review. J. Med. Internet Res. 23(1), e17828 (2021)
Balloccu, G., Boratto, L., Fenu, G., Marras, M.: Post processing recommender systems with knowledge graphs for recency, popularity, and diversity of explanations. In: Amigó, E., Castells, P., Gonzalo, J., Carterette, B., Culpepper, J.S., Kazai, G. (eds.) SIGIR ’22: The 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Spain, 11–15 July 2022, pp. 646–656. ACM (2022). https://doi.org/10.1145/3477495.3532041
Bhandari, A., Kumar, V., Thien Huong, P.T., Thanh, D.N.: Sentiment analysis of covid-19 tweets: Leveraging stacked word embedding representation for identifying distinct classes within a sentiment. In: Artificial Intelligence in Data and Big Data Processing: Proceedings of ICABDE 2021, pp. 341–352. Springer (2022). https://doi.org/10.1007/978-3-030-97610-1_27
Boratto, L., Fenu, G., Marras, M., Medda, G.: Consumer fairness in recommender systems: contextualizing definitions and mitigations. In: Hagen, M., Verberne, S., Macdonald, C., Seifert, C., Balog, K., Nørvåg, K., Setty, V. (eds.) ECIR 2022. LNCS, vol. 13185, pp. 552–566. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99736-6_37
Boratto, L., Fenu, G., Marras, M., Medda, G.: Practical perspectives of consumer fairness in recommendation. Inf. Process. Manage. 60(2), 103208 (2023). https://doi.org/10.1016/j.ipm.2022.103208. https://www.sciencedirect.com/science/article/pii/S0306457322003090
Buechel, S., Buffone, A., Slaff, B., Ungar, L., Sedoc, J.: Modeling empathy and distress in reaction to news stories. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 4758–4765 (2018)
Cabitza, F., Ciucci, D., Pasi, G., Viviani, M.: Responsible AI in healthcare. CoRR abs/2203.03616 (2022). https://doi.org/10.48550/arXiv.2203.03616
Chen, R.J., et al.: Algorithm fairness in AI for medicine and healthcare. CoRR abs/2110.00603 (2021). https://arxiv.org/abs/2110.00603
Currie, G., Hawk, K.E.: Ethical and legal challenges of artificial intelligence in nuclear medicine. Semin. Nucl. Med. 51(2), 120–125 (2020)
Dessì, D., Helaoui, R., Kumar, V., Recupero, D.R., Riboni, D.: TF-IDF vs word embeddings for morbidity identification in clinical notes: An initial study. In: Consoli, S., ecupero, D.R., Riboni, D. (eds.) Proceedings of the First Workshop on Smart Personal Health Interfaces co-located with 25th International Conference on Intelligent User Interfaces, SmartPhil@IUI 2020, Cagliari, Italy, March 17, 2020. CEUR Workshop Proceedings, vol. 2596, pp. 1–12. CEUR-WS.org (2020), http://ceur-ws.org/Vol-2596/paper1.pdf
Diao, J.A., et al.: Clinical implications of removing race from estimates of kidney function. JAMA 325(2), 184–186 (2021)
Gómez, E., Zhang, C.S., Boratto, L., Salamó, M., Marras, M.: The winner takes it all: Geographic imbalance and provider (un)fairness in educational recommender systems. In: Diaz, F., Shah, C., Suel, T., Castells, P., Jones, R., Sakai, T. (eds.) SIGIR ’21: The 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual Event, Canada, 11–15 July 2021, pp. 1808–1812. ACM (2021). https://doi.org/10.1145/3404835.3463235,https://doi.org/10.1145/3404835.3463235
Gómez, E., Zhang, C.S., Boratto, L., Salamó, M., Ramos, G.: Enabling cross-continent provider fairness in educational recommender systems. Future Gener. Comput. Syst. 127, 435–447 (2022). https://doi.org/10.1016/j.future.2021.08.025
Guo, J., Fan, Y., Ji, X., Cheng, X.: Matchzoo: A learning, practicing, and developing system for neural text matching. In: Piwowarski, B., Chevalier, M., Gaussier, É., Maarek, Y., Nie, J., Scholer, F. (eds.) Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2019, Paris, France, 21–25 July 2019, pp. 1297–1300. ACM (2019). https://doi.org/10.1145/3331184.3331403
Han, S., Wang, X., Bendersky, M., Najork, M.: Learning-to-rank with BERT in tf-ranking. CoRR abs/2004.08476 (2020). https://arxiv.org/abs/2004.08476
Hu, B., Lu, Z., Li, H., Chen, Q.: Convolutional neural network architectures for matching natural language sentences. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., einberger, K.Q. (eds.) Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014(December), pp. 8–13, 2014. Montreal, Quebec, Canada, pp. 2042–2050 (2014). https://proceedings.neurips.cc/paper/2014/hash/b9d487a30398d42ecff55c228ed5652b-Abstract.html
Kumar, V., Mishra, B.K., Mazzara, M., Thanh, D.N., Verma, A.: Prediction of malignant and benign breast cancer: a data mining approach in healthcare applications. In: Advances in data science and management. Springer (2020)
Kumar, V., Recupero, D.R., Helaoui, R., Riboni, D.: K-lm: knowledge augmenting in language models within the scholarly domain. IEEE Access 10, 91802–91815 (2022)
Kumar, V., Recupero, D.R., Riboni, D., Helaoui, R.: Ensembling classical machine learning and deep learning approaches for morbidity identification from clinical notes. IEEE Access 9, 7107–7126 (2020)
Le Glaz, A., Haralambous, Y., Kim-Dufor, D.H., Lenca, P., Billot, R., Ryan, T.C., Marsh, J., Devylder, J., Walter, M., Berrouiguet, S., et al.: Machine learning and natural language processing in mental health: systematic review. J. Med. Internet Res. 23(5), e15708 (2021)
Locke, S., Bashall, A., Al-Adely, S., Moore, J., Wilson, A., Kitchen, G.B.: Natural language processing in medicine: a review. Trends in Anaesthesia and Critical Care 38, 4–9 (2021)
Lopez, Leo, I., Hart, Louis H., I., Katz, M.H.: Racial and ethnic health disparities related to COVID-19. JAMA 325(8), 719–720 (2021). https://doi.org/10.1001/jama.2020.26443
Luo, M., Mitra, A., Gokhale, T., Baral, C.: Improving biomedical information retrieval with neural retrievers. In: Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI 2022, The Twelveth Symposium on Educational Advances in Artificial Intelligence, EAAI 2022 Virtual Event, 22 February–1 March 2022, pp. 11038–11046. AAAI Press (2022). https://ojs.aaai.org/index.php/AAAI/article/view/21352
Marras, M., Boratto, L., Ramos, G., Fenu, G.: Equality of learning opportunity via individual fairness in personalized recommendations. Int. J. Artif. Intell. Educ. 32(3), 636–684 (2022). https://doi.org/10.1007/s40593-021-00271-1
Mhasawade, V., Zhao, Y., Chunara, R.: Machine learning and algorithmic fairness in public and population health. Nat. Mach. Intell. 3(8), 659–666 (2021). https://doi.org/10.1038/s42256-021-00373-4
D Mitra, B., Diaz, F., Craswell, N.: Learning to match using local and distributed representations of text for web search. In: Barrett, R., Cummings, R., Agichtein, E., Gabrilovich, E. (eds.) Proceedings of the 26th International Conference on World Wide Web, WWW 2017, Perth, Australia, 3–7 April 2017, pp. 1291–1299. ACM (2017). https://doi.org/10.1145/3038912.3052579
Morahan-Martin, J.: How internet users find, evaluate, and use online health information: A cross-cultural review. Cyberpsychology Behav. Soc. Netw. 7(5), 497–510 (2004). https://doi.org/10.1089/cpb.2004.7.497
Morahan-Martin, J., Anderson, C.D.: Information and misinformation online: recommendations for facilitating accurate mental health information retrieval and evaluation. Cyberpsychology Behav. Soc. Netw. 3(5), 731–746 (2000). https://doi.org/10.1089/10949310050191737
Patel, D., Msosa, Y., Wang, T., Mustafa, O.G., Gee, S., Williams, J., Roberts, A., Dobson, R.J.B., Gaughran, F.: An implementation framework and a feasibility evaluation of a clinical decision support system for diabetes management in secondary mental healthcare using cogstack. BMC Medical Informatics Decis. Mak. 22(1), 100 (2022). https://doi.org/10.1186/s12911-022-01842-5
Progga, F.T., Rubya, S.: "just like therapy!": Investigating the potential of storytelling in online postpartum depression communities. In: Fiesler, C., de Carvalho, A.F.P. (eds.) The 2023 ACM International Conference on Supporting Group Work, GROUP ’23, Companion, Hilton Head, SC, USA, 8–11 January 2023, pp. 18–20. ACM (2023). https://doi.org/10.1145/3565967.3570977
Raj, A., Ekstrand, M.D.: Measuring fairness in ranked results: An analytical and empirical comparison. In: Amigó, E., Castells, P., Gonzalo, J., Carterette, B., Culpepper, J.S., Kazai, G. (eds.) SIGIR ’22: The 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Spain, 11–15 July 2022, pp. 726–736. ACM (2022). https://doi.org/10.1145/3477495.3532018,https://doi.org/10.1145/3477495.3532018
Rashkin, H., Smith, E.M., Li, M., Boureau, Y.L.: Towards empathetic open-domain conversation models: a new benchmark and dataset. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (2019)
Snowden, L.R.: Bias in mental health assessment and intervention: theory and evidence. Am. J. Public Health 93(2), 239–243 (2003). https://doi.org/10.2105/AJPH.93.2.239,pMID: 12554576
Talman, A., Yli-Jyrä, A., Tiedemann, J.: Sentence embeddings in NLI with iterative refinement encoders. Nat. Lang. Eng. 25(4), 467–482 (2019). https://doi.org/10.1017/S1351324919000202
Wells, K., Klap, R., Koike, A., Sherbourne, C.: Ethnic disparities in unmet need for alcoholism, drug abuse, and mental health care. Am. J. Psychiatry 158(12), 2027–2032 (2001)
Wu, H., Ma, C., Mitra, B., Diaz, F., Liu, X.: A multi-objective optimization framework for multi-stakeholder fairness-aware recommendation. ACM Trans. Inf. Syst. 41(2) (2022). https://doi.org/10.1145/3564285
Wu, Z., Balloccu, S., Kumar, V., Helaoui, R., Reiter, E., Recupero, D.R., Riboni, D.: Anno-mi: a dataset of expert-annotated counselling dialogues. In: ICASSP 2022–2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6177–6181. IEEE (2022)
Wu, Z., Helaoui, R., Kumar, V., Reforgiato Recupero, D., Riboni, D.: Towards detecting need for empathetic response in motivational interviewing. In: Companion Publication of the 2020 International Conference on Multimodal Interaction, pp. 497–502 (2020)
Xiong, C., Dai, Z., Callan, J., Liu, Z., Power, R.: End-to-end neural ad-hoc ranking with kernel pooling. In: Kando, N., Sakai, T., Joho, H., Li, H., de Vries, A.P., White, R.W. (eds.) Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, Shinjuku, Tokyo, Japan, 7–11 August 2017, pp. 55–64. ACM (2017). https://doi.org/10.1145/3077136.3080809
Yang, Z., Lan, Q., Guo, J., Fan, Y., Zhu, X., Lan, Y., Wang, Y., Cheng, X.: A deep Top-K relevance matching model for ad-hoc retrieval. In: Zhang, S., Liu, T.-Y., Li, X., Guo, J., Li, C. (eds.) CCIR 2018. LNCS, vol. 11168, pp. 16–27. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01012-6_2
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kumar, V., Medda, G., Recupero, D.R., Riboni, D., Helaoui, R., Fenu, G. (2023). How Do You Feel? Information Retrieval in Psychotherapy and Fair Ranking Assessment. In: Boratto, L., Faralli, S., Marras, M., Stilo, G. (eds) Advances in Bias and Fairness in Information Retrieval. BIAS 2023. Communications in Computer and Information Science, vol 1840. Springer, Cham. https://doi.org/10.1007/978-3-031-37249-0_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-37249-0_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-37248-3
Online ISBN: 978-3-031-37249-0
eBook Packages: Computer ScienceComputer Science (R0)