[go: up one dir, main page]

Skip to main content

The Possible Equivalent Value Set for Incomplete Data Set

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2023 Workshops (ICCSA 2023)

Abstract

Incomplete or missing data is a significant challenge in real-world information systems that can lead to flawed decision-making. The rough set theory has limitations when dealing with incomplete information systems, and researchers have proposed alternative approaches. This paper proposes a new similarity relation that utilises probable equivalent value sets to improve the accuracy of incomplete information systems. The approach enhances the quality of decision-making and provides reliable results. Experiments conducted on various datasets with different levels of missing data show that the approach can improve the accuracy of incomplete information processing by up to 90%. Compared to existing methods, the proposed approach can handle both categorical and continuous attributes, address problems of non-uniqueness and redundancy of probable equivalent value sets, and is not dependent on any specific data distribution. In conclusion, the proposed technique provides an effective solution to the challenges of incomplete information systems. By using probable equivalent value sets, the approach improves the accuracy of incomplete information processing and enhances the quality of decision-making. It has potential for applications in data science and related areas, and further research is needed to explore its limitations and applicability to real-world problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akram, M., Shumaiza, Arshad, M.: A new approach based on fuzzy rough digraphs for decision-making. J. Intell. Fuzzy Syst. 35, 2105–2121 (2018). https://doi.org/10.3233/JIFS-172069

  2. Du, M.L., Tung, T.H., Tao, P., Chien, C.W., Chuang, Y.C.: Application of rough set theory to improve outpatient medical service quality in public hospitals based on the patient perspective. Front. Public Health 9, 739119 (2021). https://doi.org/10.3389/fpubh.2021.739119

  3. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml

  4. Fan, J., et al.: A novel hybrid decision-making model for team building in cloud service environment. Int. J. Comput. Integr. Manufact. 32, 1134–1153 (2019). https://doi.org/10.1080/0951192X.2019.1686172

    Article  Google Scholar 

  5. Herawan, T., Deris, M.M., Abawajy, J.H.: A rough set approach for selecting clustering attribute. Knowl.-Based Syst. 23, 220–231 (2010). https://doi.org/10.1016/j.knosys.2009.12.003

    Article  Google Scholar 

  6. Kryszkiewicz, M.: Rough set approach to incomplete information systems (1998). https://doi.org/10.1016/S0020-0255(98)10019-1

  7. Li, J., Fang, H., Song, W.: Failure mode and effects analysis using variable precision rough set theory and TODIM method. IEEE Trans. Reliab. 68, 1242–1256 (2019). https://doi.org/10.1109/TR.2019.2927654

    Article  Google Scholar 

  8. Lipski, W.: On databases with incomplete information. J. ACM (JACM) 28, 41–70 (1981). https://doi.org/10.1145/322234.322239

    Article  MathSciNet  MATH  Google Scholar 

  9. Luo, J., Fujita, H., Yao, Y., Qin, K.: On modeling similarity and three-way decision under incomplete information in rough set theory. Knowl.-Based Syst. 191, 105251 (2020). https://doi.org/10.1016/j.knosys.2019.105251

  10. Luo, J., Qin, K., Zhang, Y., Zhao, X.R.: Incrementally updating approximations based on the graded tolerance relation in incomplete information tables. Soft Comput. 24(12), 8655–8671 (2020). https://doi.org/10.1007/s00500-020-04838-3

    Article  MATH  Google Scholar 

  11. Nguyen, D.V., Yamada, K., Unehara, M.: Extended tolerance relation to define a new rough set model in incomplete information systems. Adv. Fuzzy Syst. 9 (2013). https://doi.org/10.1155/2013/372091

  12. Pawlak, Z., Skowron, A.: Rudiments of rough sets. Inf. Sci. 177, 3–27 (2007). https://doi.org/10.1016/j.ins.2006.06.003

    Article  MathSciNet  MATH  Google Scholar 

  13. Praba, B., Gomathi, G.: Hypergraphs and rough sets with their applications in decision-making problems. New Math. Nat. Comput. 18, 293–311 (2022). https://doi.org/10.1142/S1793005722500156

    Article  Google Scholar 

  14. Riaz, M., Dayyaz, B., Firdous, A., Fakhar, A.: Novel concepts of soft rough set topology with applications. J. Intell. Fuzzy Syst. 36(4), 3579–3590 (2019). https://doi.org/10.3233/JIFS-181648

    Article  Google Scholar 

  15. Stefanowski, J., Tsoukìas, A.: Incomplete information tables and rough classification (2001). https://doi.org/10.1111/0824-7935.00162

  16. Sun, B., Chen, X., Zhang, L., Ma, W.: Three-way decision making approach to conflict analysis and resolution using probabilistic rough set over two universes. Inf. Sci. 507, 809–822 (2020). https://doi.org/10.1016/j.ins.2019.05.080

    Article  MathSciNet  MATH  Google Scholar 

  17. Sun, L., Wang, W., Xu, J., Zhang, S.: Improved LLE and neighborhood rough sets-based gene selection using lebesgue measure for cancer classification on gene expression data. J. Intell. Fuzzy Syst. 37, 1–12 (2019). https://doi.org/10.3233/JIFS-181904

    Article  Google Scholar 

  18. Wang, G.: Extension of rough set under incomplete information systems. In: 2002 IEEE World Congress on Computational Intelligence. 2002 IEEE International Conference on Fuzzy Systems. FUZZ-IEEE’02. Proceedings (Cat. No. 02CH37291), vol. 2 (2002). https://doi.org/10.1109/fuzz.2002.1006657

  19. Wang, G., Guan, L., Hu, F.: Rough set extensions in incomplete information systems. Front. Electr. Electr. Eng. China 3, 399–405 (2008). https://doi.org/10.1007/s11460-008-0070-y

    Article  Google Scholar 

  20. Yan, T., Han, C.: A novel approach of rough conditional entropy-based attribute selection for incomplete decision system. Math. Prob. Eng. 2014, 1–28 (2014). https://doi.org/10.1155/2014/728923

    Article  Google Scholar 

  21. Yang, Q., Du, P.A., Wang, Y., Liang, B.: A rough set approach for determining weights of decision makers in group decision making. PLoS One 12, 1–16 (2017). https://doi.org/10.1371/journal.pone.0172679

    Article  Google Scholar 

  22. Zhang, H., He, Y.: A rough set-based method for dual hesitant fuzzy soft sets based on decision making. J. Intell. Fuzzy Syst. 35, 3437–3450 (2018). https://doi.org/10.3233/JIFS-17456

    Article  Google Scholar 

  23. Zhang, K., Zhan, J., Wu, W.Z.: Novel fuzzy rough set models and corresponding applications to multi-criteria decision-making. Fuzzy Sets Syst. 383, 92–126 (2020). https://doi.org/10.1016/j.fss.2019.06.019

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, L., Xue, X.: Study on decision-making of soccer robot based on rough set theory. Inter. Stud. Soc. Behav. Commun. Biolog. Artif. Syst. 20(1), 61–77 (2019). https://doi.org/10.1075/is.18020.zha

  25. Zhang, L., Zhan, J., Xu, Z.: Covering-based generalized if rough sets with applications to multi-attribute decision-making. Inf. Sci. 478, 275–302 (2019). https://doi.org/10.1016/j.ins.2018.11.033

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowlegements

The work of Rabiei Mamat, Asma’ Mustafa, and Ahmad Shukri Mohd Nor is supported by RMIC, Universiti Malaysia Terengganu. The work of Tutut Herawan is supported by AMCS Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabiei Mamat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mamat, R., Mustafa, A., Nor, A.S.M., Herawan, T. (2023). The Possible Equivalent Value Set for Incomplete Data Set. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2023 Workshops. ICCSA 2023. Lecture Notes in Computer Science, vol 14105. Springer, Cham. https://doi.org/10.1007/978-3-031-37108-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37108-0_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37107-3

  • Online ISBN: 978-3-031-37108-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics