[go: up one dir, main page]

Skip to main content

On the Weak Formulations of the Multipoint Meshless FDM

  • Conference paper
  • First Online:
Computational Science – ICCS 2023 (ICCS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 10476))

Included in the following conference series:

  • 742 Accesses

Abstract

The paper discusses various formulations of the recently developed higher order Multipoint Meshless Finite Difference Method. The novel multipoint approach is based on raising the order of approximation of the unknown function by introducing additional degrees of freedom in stencil nodes, taking into account e.g. the right hand side of the considered differential equation. It improves the finite difference solution without increasing the number of nodes in an arbitrary irregular mesh. In general, the standard version of the Meshless (Generalized) FDM is based on the strong problem formulation. The extensions of the multipoint meshless FDM allow for analysis of boundary value problems posed in various weak formulations, including variational ones (Galerkin, Petrov-Galerkin), minimization of the energy functional, and the meshless local Petrov-Galerkin. Several versions of the multipoint method are proposed and examined. The paper is illustrated with some examples of the multipoint numerical tests carried out for the weak formulations and their comparison with those obtained for the strong formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lancaster, P., Salkauskas, K.: Surfaces generated by moving least-squares method. Math. Comp. 155(37), 141–158 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  2. Liszka, T., Orkisz, J.: The finite difference method at arbitrary irregular grids and its applications in applied mechanics. Comput. Struct. 11, 83–95 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  3. Nayroles, B., Touzot, G., Villon, P.: Generalizing the finite element method: diffuse approximation and diffuse elements. Comput. Mech. 10(5), 307–318 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Belytschko, T., Lu, Y.Y., Gu, L.: Element-free Galerkin methods. Int. J. Numer. Meth. Eng. 37(2), 229–256 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Onate, E., Idelsohn, S.R., Zienkiewicz, O.C., Taylor, R.L.: A finite point method in computational mechanics: applications to convective transport and fluid flow. Int. J. Numer. Meth. Eng. 39(22), 3839–3866 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Atluri, S.N., Zhu, T.: A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput. Mech. 22, 117–127 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lucy, L.B.: A numerical approach to the testing of the fission hypothesis. Astron. J. 82, 1013–1024 (1977)

    Article  Google Scholar 

  8. Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181, 375–389 (1977)

    Article  MATH  Google Scholar 

  9. Liu, W.K., Jun, S., Zhang, Y.F.: Reproducing kernel particle methods. Int. J. Numer. Meth. Eng. 20, 1081–1106 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Duarte, C.A., Oden, J.T.: An hp adaptive method using clouds. Comput. Meth. Appl. Mech. Eng. 139, 237–262 (1996)

    Article  MATH  Google Scholar 

  11. Melenk, J.M., Babuska, I.: The partition of unity finite element method: basic theory and applications. Comput. Meth. Appl. Mech. Eng. 139, 289–314 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Orkisz, J.: Finite Difference Method (Part III). In: Kleiber, M. (ed.) Handbook of Computational Solid Mechanics, pp. 336–432. Springer, Berlin (1998)

    Google Scholar 

  13. Jaworska, I.: On the ill-conditioning in the new higher order multipoint method. Comput. Math. Appl. 66(3), 238–249 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jaworska, I., Orkisz, J.: Higher order multipoint method – from Collatz to meshless FDM. Eng. Anal. Bound. Elem. 50, 341–351 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Milewski, S.: Meshless finite difference method with higher order approximation – applications in mechanics. Arch. Comput. Meth. Eng. 19(1), 1–49 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Collatz, L., Numerische Behandlung von Differential-gleichungen. Springer, Heidelberg (1955). https://doi.org/10.1007/978-3-662-22248-5

  17. Atluri, S.N., Shen, S.: The Meshless Local Petrov-Galerkin (MLPG) Method. Tech Science Press (2002)

    Google Scholar 

  18. Jaworska, I.: Multipoint meshless FD schemes applied to nonlinear and multiscale analysis. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) Computational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science, vol. 13353. pp. 55-68. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08760-8_5

  19. Jaworska, I.: On some aspects of the meshless FDM application for the heterogeneous materials. Int. J. Multiscale Comput. Eng. 15(4), 359–378 (2017)

    Article  Google Scholar 

  20. Jaworska, I.: Generalization of the multipoint meshless FDM application to the nonlinear analysis. Comput. Math. Appl. 87(3), 1–11 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen, J.-S., Hillman, M., Chi, S.-W.: Meshfree methods: progress made after 20 years. J. Eng. Mech. 143(4), 04017001 (2017)

    Article  Google Scholar 

  22. Nguyen, V.P., Rabczuk, T., Bordas, S., Duflot, M.: Meshless methods: a review and computer implementation aspects. Math. Comput. Simul. 79, 763–813 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irena Jaworska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jaworska, I. (2023). On the Weak Formulations of the Multipoint Meshless FDM. In: Mikyška, J., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2023. ICCS 2023. Lecture Notes in Computer Science, vol 10476. Springer, Cham. https://doi.org/10.1007/978-3-031-36027-5_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36027-5_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36026-8

  • Online ISBN: 978-3-031-36027-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics