Abstract
The paper discusses various formulations of the recently developed higher order Multipoint Meshless Finite Difference Method. The novel multipoint approach is based on raising the order of approximation of the unknown function by introducing additional degrees of freedom in stencil nodes, taking into account e.g. the right hand side of the considered differential equation. It improves the finite difference solution without increasing the number of nodes in an arbitrary irregular mesh. In general, the standard version of the Meshless (Generalized) FDM is based on the strong problem formulation. The extensions of the multipoint meshless FDM allow for analysis of boundary value problems posed in various weak formulations, including variational ones (Galerkin, Petrov-Galerkin), minimization of the energy functional, and the meshless local Petrov-Galerkin. Several versions of the multipoint method are proposed and examined. The paper is illustrated with some examples of the multipoint numerical tests carried out for the weak formulations and their comparison with those obtained for the strong formulation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Lancaster, P., Salkauskas, K.: Surfaces generated by moving least-squares method. Math. Comp. 155(37), 141–158 (1981)
Liszka, T., Orkisz, J.: The finite difference method at arbitrary irregular grids and its applications in applied mechanics. Comput. Struct. 11, 83–95 (1980)
Nayroles, B., Touzot, G., Villon, P.: Generalizing the finite element method: diffuse approximation and diffuse elements. Comput. Mech. 10(5), 307–318 (1992)
Belytschko, T., Lu, Y.Y., Gu, L.: Element-free Galerkin methods. Int. J. Numer. Meth. Eng. 37(2), 229–256 (1994)
Onate, E., Idelsohn, S.R., Zienkiewicz, O.C., Taylor, R.L.: A finite point method in computational mechanics: applications to convective transport and fluid flow. Int. J. Numer. Meth. Eng. 39(22), 3839–3866 (1996)
Atluri, S.N., Zhu, T.: A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput. Mech. 22, 117–127 (1998)
Lucy, L.B.: A numerical approach to the testing of the fission hypothesis. Astron. J. 82, 1013–1024 (1977)
Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181, 375–389 (1977)
Liu, W.K., Jun, S., Zhang, Y.F.: Reproducing kernel particle methods. Int. J. Numer. Meth. Eng. 20, 1081–1106 (1995)
Duarte, C.A., Oden, J.T.: An hp adaptive method using clouds. Comput. Meth. Appl. Mech. Eng. 139, 237–262 (1996)
Melenk, J.M., Babuska, I.: The partition of unity finite element method: basic theory and applications. Comput. Meth. Appl. Mech. Eng. 139, 289–314 (1996)
Orkisz, J.: Finite Difference Method (Part III). In: Kleiber, M. (ed.) Handbook of Computational Solid Mechanics, pp. 336–432. Springer, Berlin (1998)
Jaworska, I.: On the ill-conditioning in the new higher order multipoint method. Comput. Math. Appl. 66(3), 238–249 (2013)
Jaworska, I., Orkisz, J.: Higher order multipoint method – from Collatz to meshless FDM. Eng. Anal. Bound. Elem. 50, 341–351 (2015)
Milewski, S.: Meshless finite difference method with higher order approximation – applications in mechanics. Arch. Comput. Meth. Eng. 19(1), 1–49 (2012)
Collatz, L., Numerische Behandlung von Differential-gleichungen. Springer, Heidelberg (1955). https://doi.org/10.1007/978-3-662-22248-5
Atluri, S.N., Shen, S.: The Meshless Local Petrov-Galerkin (MLPG) Method. Tech Science Press (2002)
Jaworska, I.: Multipoint meshless FD schemes applied to nonlinear and multiscale analysis. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) Computational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science, vol. 13353. pp. 55-68. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08760-8_5
Jaworska, I.: On some aspects of the meshless FDM application for the heterogeneous materials. Int. J. Multiscale Comput. Eng. 15(4), 359–378 (2017)
Jaworska, I.: Generalization of the multipoint meshless FDM application to the nonlinear analysis. Comput. Math. Appl. 87(3), 1–11 (2021)
Chen, J.-S., Hillman, M., Chi, S.-W.: Meshfree methods: progress made after 20 years. J. Eng. Mech. 143(4), 04017001 (2017)
Nguyen, V.P., Rabczuk, T., Bordas, S., Duflot, M.: Meshless methods: a review and computer implementation aspects. Math. Comput. Simul. 79, 763–813 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Jaworska, I. (2023). On the Weak Formulations of the Multipoint Meshless FDM. In: Mikyška, J., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2023. ICCS 2023. Lecture Notes in Computer Science, vol 10476. Springer, Cham. https://doi.org/10.1007/978-3-031-36027-5_41
Download citation
DOI: https://doi.org/10.1007/978-3-031-36027-5_41
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-36026-8
Online ISBN: 978-3-031-36027-5
eBook Packages: Computer ScienceComputer Science (R0)