Abstract
In this paper, we systematically investigated the adsorption characteristics, electronic structure(DOS), band structure and thermal stability of diamond surface with Hydrogen terminals. We found that the most stable adsorption performance may occur on (100) surface. The adsorption stability of hydrogen atom on plane (110) is the second, and the worst on plane (111). A very shallow acceptor level is introduced through Hydrogen termination, explaining the ideal p-type diamond characteristics. The stability of the hydrogen terminal structure decreases as temperature rises. This structure has deteriorated significantly since 400 K, and the instability of the hydrogen-terminated structure on the surface is the root cause of the decrease in the hole concentration of hydrogen-terminated diamond at high temperature.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Pezzagna, S., Meijer, J.: Quantum computer based on color centers in diamond. Appl. Phys. Rev. 8(1), 011308 (2021)
Arnault, J.C., Saada, S., Ralchenko, V.: Chemical vapor deposition single‐crystal diamond: a review. physica status solidi (RRL)–Rapid Res. Let. 16(1), 2100354 (2022)
Bauch, E., Singh, S., Lee, J., et al.: Decoherence of ensembles of nitrogen-vacancy centers in diamond. Phys. Rev. B 102(13), 134210 (2020)
Shen, S., Shen, W., Liu, S., et al.: First-principles calculations of co-doping impurities in diamond. Mater. Today Commun. 23, 100847 (2019)
Li, Y., Liao, X., Guo, X., et al.: Improving thermal conductivity of epoxy-based composites by diamond-graphene binary fillers. Diamond Related Mater. 2022(126), 126 (2022)
Zhang, Z., Lin, C., Yang, X., et al.: Solar-blind imaging based on 2-inch polycrystalline diamond photodetector linear array. Carbon 173(42), 427–432 (2021)
Liu, X., Chen, X., Singh, D.J., et al.: Boron–oxygen complex yields n-type surface layer in semiconducting diamond. In: Proceedings of the National Academy of Sciences (2019)
Czelej, K., Piewak, P., Kurzydowski, K.J.: Electronic structure and N-Type doping in diamond from first principles. Mrs Adv. 1(16), 1093–1098 (2016)
Shah, Z.M., Mainwood, A.: A theoretical study of the effect of nitrogen, boron and phosphorus impurities on the growth and morphology of diamond surfaces. Diam. Relat. Mater. 17(7–10), 1307–1310 (2008)
Kato, H., et al.: Diamond bipolar junction transistor device with phosphorus-doped diamond base layer. Diamond Related Mater. 27–28:19–22 (2012)
Sque, S.J., Jones, R., Goss, J.P., et al.: Shallow donors in diamond: chalcogens, pnictogens, and their hydrogen complexes. Phys. Rev. Let. 92(1), 017402 (2004)
Prins, J.F.: n-type semiconducting diamond by means of oxygen-ion implantation. Phys. Rev. B 61(11), 7191–7194 (2000)
Kato, H., Makino, T., Yamasaki, S., et al.: n-type diamond growth by phosphorus doping on (001)-oriented surface. MRS Proc. 1039(40), 6189 (2007)
Zhou, D., Tang, L., Geng, Y., et al.: First-principles calculation to N-type Li N Co-doping and Li doping in diamond. Diamond Related Mater. 110, 108070 (2020)
Lin, T., Yue, R., Wang, Y., et al.: N-type B-S co-doping and S doping in diamond from first principles. Carbon Int. J. Sponsor. Am. Carbon Soc. 130, 458–465 (2018)
Shao, Q.Y., Wang, G.W., Zhang, J., et al.: First principles calculation of lithium-phosphorus co-doped diamond.Condensed Matter Phys. 16(1), 13702: 1–1 (2013)
Zhou D , Tang L , Zhang J , et al.: n-type B-N co-doping and N doping in diamond from first principles. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) Computational Science – ICCS 2022. ICCS 2022. LNCS, vol. 13350. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08751-6_38
Sun, S., Jia, X., Zhang, Z., et al.: HPHT synthesis of boron and nitrogen co-doped strip-shaped diamond using powder catalyst with additive h-BN. J. Cryst. Growth 377(aug.15), 22–27 (2013)
Yu, C., Zhou, C.J., Guo, J.C., et al.: 650 mW/mm output power density of H-terminated polycrystalline diamond MISFET at 10 GHz. Electron. Lett. 56(7), 334–335 (2020)
Nebel, C.E., Rezek, B., Shin, D., et al.: Surface electronic properties of H‐terminated diamond in contact with adsorbates and electrolytes. Physica Status Solidi (a) 203(13), 3273–3298 (2006)
Verona, C., Ciccognani, W., Colangeli, S., et al.: V 2 O 5 MISFETs on H-terminated diamond. IEEE Trans. Electron Devices 63(12), 4647–4653 (2016)
Kubovic, M., Janischowsky, K., Kohn, E.: Surface channel MESFETs on nanocrystalline diamond. Diam. Relat. Mater. 14(3–7), 514–517 (2005)
Ye, H., Kasu, M., Ueda, K., et al.: Temperature dependent DC and RF performance of diamond MESFET. Diam. Relat. Mater. 15(4–8), 787–791 (2006)
De Santi, C., Pavanello, L., Nardo, A., et al.: Degradation effects and origin in H-terminated diamond MESFETs.In: Terahertz, R.F. (ed.) Millimeter, and Submillimeter-Wave Technology and Applications XIII. SPIE, vol. 11279, pp. 230–236 (2020)
Kueck, D., Leber, P., Schmidt, A., et al.: AlN as passivation for surface channel FETs on H-terminated diamond. Diam. Relat. Mater. 19(7–9), 932–935 (2010)
Kasu, M., Saha, N.C., Oishi, T., et al.: Fabrication of diamond modulation-doped FETs by NO2 delta doping in an Al2O3 gate layer. Appl. Phys. Express 14(5), 051004 (2021)
Sanchogarcı́A, J.C., Brédas, J.L., Cornil, J.: Assessment of the reliability of the Perdew–Burke–Ernzerhof functionals in the determination of torsional potentials in π-conjugated molecules. Chem. Phys. Lett. 377(1), 63–68 (2003)
Monkhorst, H.J., Pack, J.D.: Special Points for Brillouin-zone Integrations. Phys. Rev. B Condensed matter 13.12, 5188–5192 (1976)
Jones, R., Goss, J.P., Briddon, P.R.: Acceptor level of nitrogen in diamond and the 270-nm absorption band. Phys. Rev. B: Condens. Matter 80(3), 1132–1136 (2009)
Rivero, P., Shelton, W., Meunier, V.: Surface properties of hydrogenated diamond in the presence of adsorbates: a hybrid functional DFT study. Carbon 110, 469–479 (2016)
Ostrovskaya, L., Perevertailo, V., Ralchenko, V., et al.: Wettability and surface energy of oxidized and hydrogen plasma-treated diamond films. Diam. Relat. Mater. 11(3–6), 845–850 (2002)
Carter, G.: Thermal resolution of desorption energy spectra. Vacuum 12(5), 245–254 (1962)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhou, D., Zhang, J., Yue, R., Wang, Y. (2023). Adsorption and Thermal Stability of Hydrogen Terminationṇ on Diamond Surface: A First-Principles Study. In: Mikyška, J., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2023. ICCS 2023. Lecture Notes in Computer Science, vol 14074. Springer, Cham. https://doi.org/10.1007/978-3-031-36021-3_43
Download citation
DOI: https://doi.org/10.1007/978-3-031-36021-3_43
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-36020-6
Online ISBN: 978-3-031-36021-3
eBook Packages: Computer ScienceComputer Science (R0)