[go: up one dir, main page]

Skip to main content

Adsorption and Thermal Stability of Hydrogen Terminationṇ on Diamond Surface: A First-Principles Study

  • Conference paper
  • First Online:
Computational Science – ICCS 2023 (ICCS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14074))

Included in the following conference series:

  • 957 Accesses

Abstract

In this paper, we systematically investigated the adsorption characteristics, electronic structure(DOS), band structure and thermal stability of diamond surface with Hydrogen terminals. We found that the most stable adsorption performance may occur on (100) surface. The adsorption stability of hydrogen atom on plane (110) is the second, and the worst on plane (111). A very shallow acceptor level is introduced through Hydrogen termination, explaining the ideal p-type diamond characteristics. The stability of the hydrogen terminal structure decreases as temperature rises. This structure has deteriorated significantly since 400 K, and the instability of the hydrogen-terminated structure on the surface is the root cause of the decrease in the hole concentration of hydrogen-terminated diamond at high temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pezzagna, S., Meijer, J.: Quantum computer based on color centers in diamond. Appl. Phys. Rev. 8(1), 011308 (2021)

    Article  Google Scholar 

  2. Arnault, J.C., Saada, S., Ralchenko, V.: Chemical vapor deposition single‐crystal diamond: a review. physica status solidi (RRL)–Rapid Res. Let. 16(1), 2100354 (2022)

    Google Scholar 

  3. Bauch, E., Singh, S., Lee, J., et al.: Decoherence of ensembles of nitrogen-vacancy centers in diamond. Phys. Rev. B 102(13), 134210 (2020)

    Article  Google Scholar 

  4. Shen, S., Shen, W., Liu, S., et al.: First-principles calculations of co-doping impurities in diamond. Mater. Today Commun. 23, 100847 (2019)

    Article  Google Scholar 

  5. Li, Y., Liao, X., Guo, X., et al.: Improving thermal conductivity of epoxy-based composites by diamond-graphene binary fillers. Diamond Related Mater. 2022(126), 126 (2022)

    Google Scholar 

  6. Zhang, Z., Lin, C., Yang, X., et al.: Solar-blind imaging based on 2-inch polycrystalline diamond photodetector linear array. Carbon 173(42), 427–432 (2021)

    Google Scholar 

  7. Liu, X., Chen, X., Singh, D.J., et al.: Boron–oxygen complex yields n-type surface layer in semiconducting diamond. In: Proceedings of the National Academy of Sciences (2019)

    Google Scholar 

  8. Czelej, K., Piewak, P., Kurzydowski, K.J.: Electronic structure and N-Type doping in diamond from first principles. Mrs Adv. 1(16), 1093–1098 (2016)

    Article  Google Scholar 

  9. Shah, Z.M., Mainwood, A.: A theoretical study of the effect of nitrogen, boron and phosphorus impurities on the growth and morphology of diamond surfaces. Diam. Relat. Mater. 17(7–10), 1307–1310 (2008)

    Article  Google Scholar 

  10. Kato, H., et al.: Diamond bipolar junction transistor device with phosphorus-doped diamond base layer. Diamond Related Mater. 27–28:19–22 (2012)

    Google Scholar 

  11. Sque, S.J., Jones, R., Goss, J.P., et al.: Shallow donors in diamond: chalcogens, pnictogens, and their hydrogen complexes. Phys. Rev. Let. 92(1), 017402 (2004)

    Google Scholar 

  12. Prins, J.F.: n-type semiconducting diamond by means of oxygen-ion implantation. Phys. Rev. B 61(11), 7191–7194 (2000)

    Article  Google Scholar 

  13. Kato, H., Makino, T., Yamasaki, S., et al.: n-type diamond growth by phosphorus doping on (001)-oriented surface. MRS Proc. 1039(40), 6189 (2007)

    Google Scholar 

  14. Zhou, D., Tang, L., Geng, Y., et al.: First-principles calculation to N-type Li N Co-doping and Li doping in diamond. Diamond Related Mater. 110, 108070 (2020)

    Google Scholar 

  15. Lin, T., Yue, R., Wang, Y., et al.: N-type B-S co-doping and S doping in diamond from first principles. Carbon Int. J. Sponsor. Am. Carbon Soc. 130, 458–465 (2018)

    Google Scholar 

  16. Shao, Q.Y., Wang, G.W., Zhang, J., et al.: First principles calculation of lithium-phosphorus co-doped diamond.Condensed Matter Phys. 16(1), 13702: 1–1 (2013)

    Google Scholar 

  17. Zhou D , Tang L , Zhang J , et al.: n-type B-N co-doping and N doping in diamond from first principles. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) Computational Science – ICCS 2022. ICCS 2022. LNCS, vol. 13350. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08751-6_38

  18. Sun, S., Jia, X., Zhang, Z., et al.: HPHT synthesis of boron and nitrogen co-doped strip-shaped diamond using powder catalyst with additive h-BN. J. Cryst. Growth 377(aug.15), 22–27 (2013)

    Google Scholar 

  19. Yu, C., Zhou, C.J., Guo, J.C., et al.: 650 mW/mm output power density of H-terminated polycrystalline diamond MISFET at 10 GHz. Electron. Lett. 56(7), 334–335 (2020)

    Article  Google Scholar 

  20. Nebel, C.E., Rezek, B., Shin, D., et al.: Surface electronic properties of H‐terminated diamond in contact with adsorbates and electrolytes. Physica Status Solidi (a) 203(13), 3273–3298 (2006)

    Google Scholar 

  21. Verona, C., Ciccognani, W., Colangeli, S., et al.: V 2 O 5 MISFETs on H-terminated diamond. IEEE Trans. Electron Devices 63(12), 4647–4653 (2016)

    Article  Google Scholar 

  22. Kubovic, M., Janischowsky, K., Kohn, E.: Surface channel MESFETs on nanocrystalline diamond. Diam. Relat. Mater. 14(3–7), 514–517 (2005)

    Article  Google Scholar 

  23. Ye, H., Kasu, M., Ueda, K., et al.: Temperature dependent DC and RF performance of diamond MESFET. Diam. Relat. Mater. 15(4–8), 787–791 (2006)

    Article  Google Scholar 

  24. De Santi, C., Pavanello, L., Nardo, A., et al.: Degradation effects and origin in H-terminated diamond MESFETs.In: Terahertz, R.F. (ed.) Millimeter, and Submillimeter-Wave Technology and Applications XIII. SPIE, vol. 11279, pp. 230–236 (2020)

    Google Scholar 

  25. Kueck, D., Leber, P., Schmidt, A., et al.: AlN as passivation for surface channel FETs on H-terminated diamond. Diam. Relat. Mater. 19(7–9), 932–935 (2010)

    Article  Google Scholar 

  26. Kasu, M., Saha, N.C., Oishi, T., et al.: Fabrication of diamond modulation-doped FETs by NO2 delta doping in an Al2O3 gate layer. Appl. Phys. Express 14(5), 051004 (2021)

    Article  Google Scholar 

  27. Sanchogarcı́A, J.C., Brédas, J.L., Cornil, J.: Assessment of the reliability of the Perdew–Burke–Ernzerhof functionals in the determination of torsional potentials in π-conjugated molecules. Chem. Phys. Lett. 377(1), 63–68 (2003)

    Google Scholar 

  28. Monkhorst, H.J., Pack, J.D.: Special Points for Brillouin-zone Integrations. Phys. Rev. B Condensed matter 13.12, 5188–5192 (1976)

    Google Scholar 

  29. Jones, R., Goss, J.P., Briddon, P.R.: Acceptor level of nitrogen in diamond and the 270-nm absorption band. Phys. Rev. B: Condens. Matter 80(3), 1132–1136 (2009)

    Article  Google Scholar 

  30. Rivero, P., Shelton, W., Meunier, V.: Surface properties of hydrogenated diamond in the presence of adsorbates: a hybrid functional DFT study. Carbon 110, 469–479 (2016)

    Article  Google Scholar 

  31. Ostrovskaya, L., Perevertailo, V., Ralchenko, V., et al.: Wettability and surface energy of oxidized and hydrogen plasma-treated diamond films. Diam. Relat. Mater. 11(3–6), 845–850 (2002)

    Article  Google Scholar 

  32. Carter, G.: Thermal resolution of desorption energy spectra. Vacuum 12(5), 245–254 (1962)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruifeng Yue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, D., Zhang, J., Yue, R., Wang, Y. (2023). Adsorption and Thermal Stability of Hydrogen Terminationṇ on Diamond Surface: A First-Principles Study. In: Mikyška, J., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2023. ICCS 2023. Lecture Notes in Computer Science, vol 14074. Springer, Cham. https://doi.org/10.1007/978-3-031-36021-3_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36021-3_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36020-6

  • Online ISBN: 978-3-031-36021-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics