[go: up one dir, main page]

Skip to main content

First-Principles Calculation to N-type Beryllium Related Co-doping and Beryllium Doping in Diamond

  • Conference paper
  • First Online:
Computational Science – ICCS 2023 (ICCS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14073))

Included in the following conference series:

  • 900 Accesses

Abstract

The Beryllium-doped (Be-doped) diamond and Beryllium related (Be-X) co-doped diamond have been carefully investigated by the density functional theory (DFT) to explore the possibility to achieve effective and shallow n-type doping in diamond. Although the ionization energy and formation energy of interstitial/substitutional Be-doped diamond is not ideal, the introduction of Be-related co-doping techniques (Be-N/O/S) greatly improves the electrical properties in diamonds. We found, for the first time, n-type diamond doping can be realized in Be-N, Be-O and Be-S co-doped systems, among which Be-N3 has the best performance. Be-N3 has the advantages of low ionization energy (0.25 eV), low formation energy (−1.59 eV), and direct bandgap. The N-2p states play a crucial role in the conduction band edge of Be-N3 co-doped diamond. Hence, the Be-N3 could be expected to become a promising alternative for N-type shallow doping in diamond.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shen, S., Shen, W., Liu, S., et al.: First-principles calculations of co-doping impurities in diamond. Mater. Today Commun. 23, 100847 (2019)

    Article  Google Scholar 

  2. Li, Y., Liao, X., Guo, X., et al.: Improving thermal conductivity of epoxy-based composites by diamond-graphene binary fillers. Diam. Relat. Mater. 126, 126 (2022)

    Article  Google Scholar 

  3. Zhang, Z., Lin, C., Yang, X., et al.: Solar-blind imaging based on 2-inch polycrystalline diamond photodetector linear array. Carbon 173(42), 427–432 (2021)

    Google Scholar 

  4. Liu, X., et al.: Boron–oxygen complex yields n-type surface layer in semiconducting diamond. Proc. Natl. Acad. Sci. 116(16), 7703–7711 (2019)

    Article  Google Scholar 

  5. Czelej, K., Śpiewak, P., Kurzydłowski, K.J.: Electronic structure and n-type doping in diamond from first principles. MRS Adv. 1(16), 1093–1098 (2016). https://doi.org/10.1557/adv.2016.87

    Article  Google Scholar 

  6. Kajihara, S.A., et al.: Nitrogen and potential n-type dopants in diamond. Phys. Rev. Lett. 66(15), 2010–2013 (1991)

    Article  Google Scholar 

  7. Goss, J.P., Briddon, P.R.: Theoretical study of Li and Na as n-type dopants for diamond. Phys. Rev. B 75(7), 2978–2984 (2007)

    Article  Google Scholar 

  8. Shah, Z.M., Mainwood, A.: A theoretical study of the effect of nitrogen, boron and phosphorus impurities on the growth and morphology of diamond surfaces. Diam. Relat. Mater. 17(7–10), 1307–1310 (2008)

    Article  Google Scholar 

  9. Kato, H.: Diamond bipolar junction transistor device with phosphorus-doped diamond base layer. Diam. Relat. Mater. 27, 19–22 (2012)

    Article  Google Scholar 

  10. Sque, S.J., Jones, R., Goss, J.P., et al.: Shallow donors in diamond: chalcogens, pnictogens, and their hydrogen complexes. Phys. Rev. Lett. 92(1), 017402 (2004)

    Article  Google Scholar 

  11. Prins, J.F.: n-type semiconducting diamond by means of oxygen-ion implantation. Phys. Rev. B 61(11), 7191–7194 (2000)

    Article  Google Scholar 

  12. Kato, H., Makino, T., Yamasaki, S., et al.: n-type diamond growth by phosphorus doping on (001)-oriented surface. MRS Proc. 1039(40), 6189 (2007)

    Google Scholar 

  13. Delun, Z., Tang, L., Geng, Y., et al.: First-principles calculation to N-type LiN Co-doping and Li doping in diamond. Diam. Relat. Mater. 110, 108070 (2020)

    Article  Google Scholar 

  14. Tang, L., Yue, R., Wang, Y.: N-type BS co-doping and S doping in diamond from first principles. Carbon 130, 458–465 (2018)

    Article  Google Scholar 

  15. Shao, Q.Y., Wang, G.W., Zhang, J., et al.: First principles calculation of lithium-phosphorus co-doped diamond. Condens. Matter Phys. 16(1), 1 (2013)

    Article  Google Scholar 

  16. Zhou, D., Tang, L., Zhang, J., Yue, R., Wang, Y.: n-type B-N co-doping and N doping in diamond from first principles. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) Computational Science (ICCS 2022). LNCS, pp. 530–540. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08751-6_38

    Chapter  Google Scholar 

  17. Sun, S., Jia, X., Zhang, Z., et al.: HPHT synthesis of boron and nitrogen co-doped strip-shaped diamond using powder catalyst with additive h-BN. J. Cryst. Growth 377(15), 22–27 (2013)

    Article  Google Scholar 

  18. Ueda, K., Kasu, M.: Beryllium-doped single-crystal diamond grown by microwave plasma CVD. Diam. Relat. Mater. 18(2–3), 121–123 (2009)

    Article  Google Scholar 

  19. Sancho-Garcı́a, J.C., Brédas, J.L., Cornil, J.: Assessment of the reliability of the Perdew–Burke–Ernzerhof functionals in the determination of torsional potentials in π-conjugated molecules. Chem. Phys. Lett. 377(1–2), 63–68 (2003)

    Article  Google Scholar 

  20. Jones, R., Goss, J.P., Briddon, P.R.: Acceptor level of nitrogen in diamond and the 270-nm absorption band. Phys. Rev. B: Condens. Matter 80(3), 1132–1136 (2009)

    Article  Google Scholar 

  21. Zongbao, L., Yong, L., Ying, W., et al.: Synergistic effect in B and N co-doped Ib-type diamond single crystal: a density function theory calculation. Can. J. Phys. 94(9), 929–932 (2016)

    Article  Google Scholar 

  22. Rilby, D.P.: Lattice constant of diamond and the C-C single bond. Nature 153(3889), 587–588 (1944)

    Article  Google Scholar 

  23. Freysoldt, C., Grabowski, B., Hickel, T., et al.: First-principles calculations for point defects in solids. Rev. Mod. Phys. 86(1), 253 (2014)

    Article  Google Scholar 

  24. Kajihara, S.A., Antonelli, A., Bernholc, J., Car, R.: Nitrogen and potential n-type dopants in diamond. Phys. Rev. Lett. 66(15), 2010–2013 (1991)

    Article  Google Scholar 

  25. Goss, J.P., Briddon, P.R., Eyre, R.J.: Donor levels for selected n-type dopants in diamond: a computational study of the effect of supercell size. Phys. Rev. B: Condens. Matter 74(24), 4070–4079 (2006)

    Article  Google Scholar 

  26. Miyazaki, T., Okushi, H.: A theoretical study of a sulfur impurity in diamond. Diam. Relat. Mater. 10(3–7), 449–452 (2001)

    Article  Google Scholar 

  27. Schwingenschlögl, U., Chroneos, A., Schuster, C., et al.: Doping and cluster formation in diamond. J. Appl. Phy. 110(V110N5), 162 (2011)

    Google Scholar 

  28. Jing, Z., Li, R., Wang, X., et al.: Study on the microstructure and electrical properties of boron and sulfur codoped diamond films deposited using chemical vapor deposition. J. Nanomater. 2014(21), 4338–4346 (2014)

    Google Scholar 

  29. Eaton, S.C., Anderson, A.B., Angus, J.C., et al.: Diamond growth in the presence of boron and sulfur. Diam. Relat. Mater. 12(10–11), 1627–1632 (2003)

    Article  Google Scholar 

  30. Moussa, J.E., Marom, N., Sai, N., Chelikowsky, J.R.: Theoretical design of a shallow donor in diamond by lithium-nitrogen codoping. Phys. Rev. Lett. 108(22), 226404 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruifeng Yue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, D., Zhang, J., Yue, R., Wang, Y. (2023). First-Principles Calculation to N-type Beryllium Related Co-doping and Beryllium Doping in Diamond. In: Mikyška, J., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2023. ICCS 2023. Lecture Notes in Computer Science, vol 14073. Springer, Cham. https://doi.org/10.1007/978-3-031-35995-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35995-8_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35994-1

  • Online ISBN: 978-3-031-35995-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics