[go: up one dir, main page]

Skip to main content

blob loss: Instance Imbalance Aware Loss Functions for Semantic Segmentation

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2023)

Abstract

Deep convolutional neural networks (CNN) have proven to be remarkably effective in semantic segmentation tasks. Most popular loss functions were introduced targeting improved volumetric scores, such as the Dice coefficient (DSC). By design, DSC can tackle class imbalance, however, it does not recognize instance imbalance within a class. As a result, a large foreground instance can dominate minor instances and still produce a satisfactory DSC. Nevertheless, detecting tiny instances is crucial for many applications, such as disease monitoring. For example, it is imperative to locate and surveil small-scale lesions in the follow-up of multiple sclerosis patients. We propose a novel family of loss functions, blob loss, primarily aimed at maximizing instance-level detection metrics, such as F1 score and sensitivity. Blob loss is designed for semantic segmentation problems where detecting multiple instances matters. We extensively evaluate a DSC-based blob loss in five complex 3D semantic segmentation tasks featuring pronounced instance heterogeneity in terms of texture and morphology. Compared to soft Dice loss, we achieve 5% improvement for MS lesions, 3% improvement for liver tumor, and an average 2% improvement for microscopy segmentation tasks considering F1 score.

B. Wiestler and B. Menze—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bengio, Y.: Practical recommendations for gradient-based training of deep architectures. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 437–478. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_26

    Chapter  Google Scholar 

  2. Berman, M., et al.: The lovász-softmax loss: a tractable surrogate for the optimization of the intersection-over-union measure in neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4413–4421 (2018)

    Google Scholar 

  3. Bhatia, et al.: Proteomics of spatially identified tissues in whole organs. arXiv (2021)

    Google Scholar 

  4. Bilic, P., et al.: The liver tumor segmentation benchmark (LiTS) (2019)

    Google Scholar 

  5. Caicedo, J.C., et al.: Nucleus segmentation across imaging experiments: the 2018 data science bowl. Nat. Methods 16(12), 1247–1253 (2019)

    Article  Google Scholar 

  6. Eelbode, T., et al.: Optimization for medical image segmentation: theory and practice when evaluating with dice score or Jaccard index. IEEE Trans. Med. Imaging 39(11), 3679–3690 (2020)

    Article  Google Scholar 

  7. Elliott, C., et al.: Slowly expanding/evolving lesions as a magnetic resonance imaging marker of chronic active multiple sclerosis lesions. Mult. Scler. J. 25(14), 1915–1925 (2019)

    Article  Google Scholar 

  8. Falk, T., et al.: U-net: deep learning for cell counting, detection, and morphometry. Nat. Methods 16(1), 67–70 (2019)

    Article  Google Scholar 

  9. Fidon, L., et al.: Generalised wasserstein dice score for imbalanced multi-class segmentation using holistic convolutional networks. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 64–76. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_6

    Chapter  Google Scholar 

  10. Geirhos, R., et al.: ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. arXiv preprint arXiv:1811.12231 (2018)

  11. He, K., et al.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  12. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  13. Isensee, F., et al.: nnU-net: breaking the spell on successful medical image segmentation. arXiv preprint arXiv:1904.08128, vol. 1, pp. 1–8 (2019)

  14. Jungo, A., et al.: pymia: a python package for data handling and evaluation in deep learning-based medical image analysis. Comput. Methods Programs Biomed. 198, 105796 (2021)

    Google Scholar 

  15. Kofler, F., et al.: Approaching peak ground truth. arXiv preprint arXiv:2301.00243 (2022)

  16. Kofler, F., et al.: Are we using appropriate segmentation metrics? Identifying correlates of human expert perception for CNN training beyond rolling the dice coefficient (2021)

    Google Scholar 

  17. Lin, T.Y., et al.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  18. Ma, J., et al.: Loss odyssey in medical image segmentation. Med. Image Anal. 71, 102035 (2021)

    Google Scholar 

  19. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571, IEEE (2016)

    Google Scholar 

  20. Misra, D.: Mish: a self regularized non-monotonic neural activation function. arXiv preprint arXiv:1908.08681 (2019)

  21. Pan, C., et al.: Deep learning reveals cancer metastasis and therapeutic antibody targeting in the entire body. Cell 179(7), 1661–1676 (2019)

    Article  Google Scholar 

  22. Rahman, M.A., Wang, Y.: Optimizing intersection-over-union in deep neural networks for image segmentation. In: Bebis, G., et al. (eds.) ISVC 2016. LNCS, vol. 10072, pp. 234–244. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50835-1_22

    Chapter  Google Scholar 

  23. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  24. Salehi, S.S.M., Erdogmus, D., Gholipour, A.: Tversky loss function for image segmentation using 3D fully convolutional deep networks. In: Wang, Q., Shi, Y., Suk, H.-I., Suzuki, K. (eds.) MLMI 2017. LNCS, vol. 10541, pp. 379–387. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67389-9_44

    Chapter  Google Scholar 

  25. Shirokikh, B., et al.: Universal loss reweighting to balance lesion size inequality in 3D medical image segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 523–532. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_51

    Chapter  Google Scholar 

  26. Silversmith, W.: seung-lab/connected-components-3d: Zenodo release v1. Zenodo (2021). https://doi.org/10.5281/zenodo.5535251

  27. Sirinukunwattana, K., Snead, D.R., Rajpoot, N.M.: A stochastic polygons model for glandular structures in colon histology images. IEEE Trans. Med. Imaging 34(11), 2366–2378 (2015)

    Article  Google Scholar 

  28. Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Jorge Cardoso, M.: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 240–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_28

    Chapter  Google Scholar 

  29. Wright, L., Demeure, N.: Ranger21: a synergistic deep learning optimizer. arXiv preprint arXiv:2106.13731 (2021)

  30. Zhang, H., et al.: All-net: Anatomical information lesion-wise loss function integrated into neural network for multiple sclerosis lesion segmentation. NeuroImage: Clin. 32, 102854 (2021)

    Google Scholar 

  31. Zhao, S., et al.: Cellular and molecular probing of intact human organs. Cell 180(4), 796–812 (2020)

    Article  Google Scholar 

  32. Zhu, W., et al.: AnatomyNet: deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy. Med. Phys. 46(2), 576–589 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Kofler .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 453 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kofler, F. et al. (2023). blob loss: Instance Imbalance Aware Loss Functions for Semantic Segmentation. In: Frangi, A., de Bruijne, M., Wassermann, D., Navab, N. (eds) Information Processing in Medical Imaging. IPMI 2023. Lecture Notes in Computer Science, vol 13939. Springer, Cham. https://doi.org/10.1007/978-3-031-34048-2_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34048-2_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34047-5

  • Online ISBN: 978-3-031-34048-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics