[go: up one dir, main page]

Skip to main content

Resolution-Invariant Image Classification Based on Fourier Neural Operators

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14009))

Abstract

In this paper we investigate the use of Fourier Neural Operators (FNOs) for image classification in comparison to standard Convolutional Neural Networks (CNNs). Neural operators are a discretization-invariant generalization of neural networks to approximate operators between infinite dimensional function spaces. FNOs—which are neural operators with a specific parametrization—have been applied successfully in the context of parametric PDEs. We derive the FNO architecture as an example for continuous and Fréchet-differentiable neural operators on Lebesgue spaces. We further show how CNNs can be converted into FNOs and vice versa and propose an interpolation-equivariant adaptation of the architecture.

This work was supported by the European Union’s Horizon 2020 programme, Marie Skłodowska-Curie grant agreement No. 777826. TR and MB acknowledge the support of the BMBF, grant agreement No. 05M2020. SK and MB acknowledge the support of the DFG, project BU 2327/19-1. This work was carried out while MB was with the FAU Erlangen-Nürnberg.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Our code is available online: github.com/samirak98/FourierImaging.

  2. 2.

    This dataset consists of 60, 000 training and 10, 000 test \(28\times 28\) images (grayscale).

  3. 3.

    We employ a former version of the data set, which consists of 76, 262 RGB images for training and 2, 250 images for testing of size \(224\times 224\), where the task is to classify birds out of 450 possible classes.

References

  1. Ambrosetti, A., Prodi, G.: A Primer of Nonlinear Analysis. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  2. Briand, T.: Trigonometric polynomial interpolation of images. Image Process. On Line 9, 291–316 (2019)

    Article  MathSciNet  Google Scholar 

  3. Cai, D., Chen, K., Qian, Y., Kämäräinen, J.K.: Convolutional low-resolution fine-grained classification. Pattern Recogn. Lett. 119, 166–171 (2019)

    Article  Google Scholar 

  4. Chi, L., Jiang, B., Mu, Y.: Fast Fourier convolution. Adv. Neural. Inf. Process. Syst. 33, 4479–4488 (2020)

    Google Scholar 

  5. Fukushima, K.C.: Cognitron: a self-organizing multilayered neural network. Biol. Cybern. 20, 121–136 (1975)

    Article  Google Scholar 

  6. Goldberg, H., Kampowsky, W., Tröltzsch, F.: On NEMYTSKIJ operators in Lp-spaces of abstract functions. Math. Nachr. 155(1), 127–140 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  8. Grafakos, L.: Classical Fourier Analysis. Graduate Texts in Mathematics, 3rd edn. Springer, New York (2014)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE CVPR, pp. 770–778 (2016)

    Google Scholar 

  10. Hendrycks, D., Gimpel, K.: Gaussian error linear units (GELUs). arXiv:1606.08415 (2016)

  11. Johnny, W., Brigido, H., Ladeira, M., Souza, J.C.F.: Fourier neural operator for image classification. In: 2022 17th Iberian Conference on Information Systems and Technologies (CISTI), pp. 1–6 (2022)

    Google Scholar 

  12. Kovachki, N.B., Lanthaler, S., Mishra, S.: On universal approximation and error bounds for Fourier neural operators. J. Mach. Learn. Res. 22(1), 13237–13312 (2022)

    MathSciNet  MATH  Google Scholar 

  13. Kovachki, N.B., et al.: Neural operator: Learning maps between function spaces. arXiv:2108.08481 (2021)

  14. Koziarski, M., Cyganek, B.: Impact of low resolution on image recognition with deep neural networks: an experimental study. Int. J. Appl. Math. Comput. Sci. 28(4), 735–744 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, Z., Kovachki, N.B., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A.M., Anandkumar, A.: Fourier neural operator for parametric partial differential equations. In: 9th International Conference on Learning Representations (ICLR) (2021)

    Google Scholar 

  16. Li, Z., et al.: Physics-informed neural operator for learning partial differential equations. arXiv preprint arXiv:2111.03794 (2021)

  17. Peng, X., Hoffman, J., Stella, X.Y., Saenko, K.: Fine-to-coarse knowledge transfer for low-res image classification. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 3683–3687. IEEE (2016)

    Google Scholar 

  18. Piosenka, G.: Birds 500 - species image classification (2021). https://www.kaggle.com/datasets/gpiosenka/100-bird-species

  19. Rao, Y., Zhao, W., Zhu, Z., Lu, J., Zhou, J.: Global filter networks for image classification. Adv. Neural. Inf. Process. Syst. 34, 980–993 (2021)

    Google Scholar 

  20. Remmert, R.: Theory of Complex Functions. Springer, New York (1991)

    Book  MATH  Google Scholar 

  21. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  22. Tröltzsch, F.: Optimal Control of Partial Differential Equations: Theory, Methods, and Applications, Graduate Studies in Mathematics, vol. 112. American Mathematical Society, Providence, Rhode Island (2010)

    MATH  Google Scholar 

  23. Vaĭnberg, M.M.: Variational method and method of monotone operators in the theory of nonlinear equations. No. 22090, John Wiley & Sons, Hoboken (1974)

    Google Scholar 

  24. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. arXiv:1708.07747 (2017)

  25. Zhou, M., et al.: Deep Fourier up-sampling. arxiv:2210.05171 (2022)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samira Kabri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kabri, S., Roith, T., Tenbrinck, D., Burger, M. (2023). Resolution-Invariant Image Classification Based on Fourier Neural Operators. In: Calatroni, L., Donatelli, M., Morigi, S., Prato, M., Santacesaria, M. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2023. Lecture Notes in Computer Science, vol 14009. Springer, Cham. https://doi.org/10.1007/978-3-031-31975-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31975-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31974-7

  • Online ISBN: 978-3-031-31975-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics