[go: up one dir, main page]

Skip to main content

Enumerating, Cataloguing and Classifying All Quantales on up to Nine Elements

  • Conference paper
  • First Online:
Relational and Algebraic Methods in Computer Science (RAMiCS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13896))

Abstract

Using computer software, every quantale on up to nine elements has been enumerated up to isomorphism, catalogued and classified with respect to various properties. In order to achieve this the enumeration was branched by partitioning the search space based on various isomorphic invariants of quantales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://git.cs.umu.se/ens12asa/quantales_up_to_9_elements.

References

  1. Belohlavek, R., Vychodil, V.: Residuated lattices of size \(\le \) 12. Order 27(2), 147–161 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ben-Ari, M.: Mathematical Logic for Computer Science. Springer, Heidelberg (2012)

    Google Scholar 

  3. Biere, A., et al.: Lingeling, Plingeling and Treengeling entering the SAT competition 2013. Proc. SAT Compet. 2013, 1 (2013)

    Google Scholar 

  4. Distler, A., Jefferson, C., Kelsey, T., Kotthoff, L.: The semigroups of order 10. In: Milano, M. (ed.) CP 2012. LNCS, pp. 883–899. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33558-7_63

    Chapter  Google Scholar 

  5. Distler, A., Kelsey, T.: The semigroups of order 9 and their automorphism groups. Semigroup Forum 88(1), 93–112 (2013). https://doi.org/10.1007/s00233-013-9504-9

    Article  MathSciNet  MATH  Google Scholar 

  6. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24605-3_37

    Chapter  Google Scholar 

  7. Eklund, P.: Information and process in health. In: Integrated Care and Fall Prevention in Active and Healthy Aging, pp. 263–279. IGI Global (2021)

    Google Scholar 

  8. Eklund, P.: Quantales in circuit design. In: 2021 IEEE 51st International Symposium on Multiple-Valued Logic (ISMVL), pp. 39–42. IEEE (2021)

    Google Scholar 

  9. Eklund, P., García, J.G., Höhle, U., Kortelainen, J.: Semigroups in complete lattices. Quant. Modul. Related Topics 54 (2018)

    Google Scholar 

  10. Eklund, P., Höhle, U., Kortelainen, J.: Modules in health classifications. In: 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–6. IEEE (2017)

    Google Scholar 

  11. McCune, W.: Prover9 and Mace4 (2005–2010). https://www.cs.unm.edu/~mccune/prover9

  12. OEIS Foundation Inc.: The number of 1 by n haunted mirror maze puzzles with a unique solution ending with a mirror, where mirror orientation is fixed., entry A204089 in the On-Line Encyclopedia of Integer Sequences (2022). https://oeis.org/204089

  13. OEIS Foundation Inc.: Number of finite, negative, totally ordered monoids of size n (semi-groups with a neutral element that is also the top element), entry A253950 in the On-Line Encyclopedia of Integer Sequences (2022). https://oeis.org/253950

  14. OEIS Foundation Inc.: Number of lattices on n unlabeled nodes, entry A006966 in the On-Line Encyclopedia of Integer Sequences (2022). https://oeis.org/A006966

  15. OEIS Foundation Inc.: Number of nonisomorphic semigroups of order n, entry A027851 in the On-Line Encyclopedia of Integer Sequences (2022). https://oeis.org/A027851

  16. Rosenthal, K.I.: Quantales and their applications. Longman Scientific and Technical (1990)

    Google Scholar 

  17. Shamsgovara, A.: A catalogue of every quantale of order up to 9. In: 39th Linz Seminar on Fuzzy Set Theory, Linz, Austria. LINZ2022 (2022)

    Google Scholar 

  18. Shamsgovara, A.: Number of quantales on n elements, up to isomorphism, entry A354493 in the On-Line Encyclopedia of Integer Sequences (2022). https://oeis.org/A354493

  19. Shamsgovara, A.: Quantales (2022). https://apps.apple.com/se/app/quantales/id1627990198

  20. Shamsgovara, A., Eklund, P., Winter, M.: A catalogue of finite quantales. GLIOC Notes (2019)

    Google Scholar 

  21. Yetter, D.N.: Quantales and (noncommutative) linear logic. J. Symb. Logic 55(1), 41–64 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

This work has been supported by the project “A digital twin to support sustainable and available production as a service" (DT-SAPS), funded by Produktion2030, the Strategic innovation programme for sustainable production in Sweden, and the project "A general digital twin driving mining innovation through statistical and logical modelling" (DT-MINN), funded by the Swedish Mining Innovation 2022. The author would also like to thank professor Patrik Eklund for many discussions surrounding quantales and other matters, some of which inspired this project to happen. The anonymous reviewers also deserve kudos for having provided thorough and useful feedback on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arman Shamsgovara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shamsgovara, A. (2023). Enumerating, Cataloguing and Classifying All Quantales on up to Nine Elements. In: Glück, R., Santocanale, L., Winter, M. (eds) Relational and Algebraic Methods in Computer Science. RAMiCS 2023. Lecture Notes in Computer Science, vol 13896. Springer, Cham. https://doi.org/10.1007/978-3-031-28083-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28083-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28082-5

  • Online ISBN: 978-3-031-28083-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics