Abstract
Many object detection models struggle with several problematic aspects of small object detection including the low number of samples, lack of diversity and low features representation. Taking into account that GANs belong to generative models class, their initial objective is to learn to mimic any data distribution. Using the proper GAN model would enable augmenting low precision data increasing their amount and diversity. This solution could potentially result in improved object detection results. Additionally, incorporating GAN-based architecture inside deep learning model can increase accuracy of small objects recognition. In this work the GAN-based method with augmentation is presented to improve small object detection on VOC Pascal dataset. The method is compared with different popular augmentation strategies like object rotations, shifts etc. The experiments are based on FasterRCNN model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ren, S., Ross, K.H., Sun, G.J.: Faster R-CNN: towards real-time object detection with region proposal networks. https://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf
Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014). http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
Li, J., Liang, X., Wei, Y., Xu, T., Feng, J., Yan, S.: Perceptual generative adversarial networks for small object detection (2017). https://arxiv.org/pdf/1706.05274.pdf
Everingham, M., van Gool, L., Williams, C., Winn, J., Zisserman, A.: The PASCAL visual object classes homepage (2014). http://host.robots.ox.ac.uk/pascal/VOC/
Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation (2014). https://arxiv.org/pdf/1311.2524.pdf
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection (2016). https://arxiv.org/pdf/1506.02640.pdf
Liu, W., et al.: SSD: single shot multibox detector (2016). https://arxiv.org/pdf/1512.02325.pdf
Ledig, C., et al.: Twitter. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network (2017). https://arxiv.org/pdf/1609.04802.pdf
Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks (2016). https://arxiv.org/pdf/1511.06434.pdf
Krizhevsky, A., Nair, V., Hinton, G.: Cifar-10, Cifar-100 dataset (2009). https://www.cs.toronto.edu/kriz/cifar.html
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2015). https://arxiv.org/pdf/1409.1556.pdf
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015). https://arxiv.org/pdf/1512.03385.pdf
Frid-Adar, M., Diamant, I., Klang, E., Amitai, M., Goldberger, J., Greenspan, H.: GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification (2018). https://arxiv.org/pdf/1803.01229.pdf
Xiao, C., Li, B., Zhu, J.-Y., He, W., Liu, M., Song, D.: Generating adversarial examples with adversarial networks (2019). https://arxiv.org/pdf/1801.02610.pdf
Lin, T.-Y., et al.: Microsoft COCO: common objects in context (2015). https://arxiv.org/pdf/1405.0312.pdf
Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection (2018). https://arxiv.org/pdf/1708.02002.pdf
Lin, T.-Y., Dollar, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection (2017). https://arxiv.org/pdf/1612.03144.pdf
Hu, P., Ramanan, D.: Finding tiny faces (2017). https://arxiv.org/pdf/1612.04402.pdf
Lim, J.-S., Astrid, M., Yoon, H.-J., Lee, S.-I.: Small object detection using context and attention (2019). https://arxiv.org/pdf/1912.06319.pdf
Hu, G., Yang, Z., Hu, L., Huang, L., Han, J.: Small object detection with multiscale features. Int. J. Digit. Multimedia Broadcast. 1–10 (2018)
Kisantal, M., Wojna, Z., Murawski, J., Naruniec, J., Cho, K.: Augmentation for small object detection (2019). https://arxiv.org/pdf/1902.07296.pdf
Chen, Y., Li, J., Niu, Y., He, J.: Small object detection networks based on classification-oriented super-resolution GAN for UAV aerial imagery. In: Chinese Control And Decision Conference (CCDC), pp. 4610–4615 (2019)
Jiang, W., Ying, N.: Improve object detection by data enhancement based on generative adversarial nets. https://arxiv.org/pdf/1903.01716.pdf
Bai, Y., Zhang, Y., Ding, M., Ghanem, B.: SOD-MTGAN: small object detection via multi-task generative adversarial network (2018)
Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3D object representations for fine-grained categorization. In: 4th International IEEE Workshop on 3D Representation and Recognition (3dRR-13), Sydney, Australia (2013)
Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples, arXiv preprint arXiv:1412.6572 (2014)
Goodfellow, I., et al.: Generative adversarial nets. In: NIPS, pp. 2672–2680 (2014)
Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Stachoń, M., Pietroń, M. (2023). Chosen Methods of Improving Small Object Recognition with Weak Recognizable Features. In: Arai, K. (eds) Advances in Information and Communication. FICC 2023. Lecture Notes in Networks and Systems, vol 652. Springer, Cham. https://doi.org/10.1007/978-3-031-28073-3_19
Download citation
DOI: https://doi.org/10.1007/978-3-031-28073-3_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-28072-6
Online ISBN: 978-3-031-28073-3
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)