[go: up one dir, main page]

Skip to main content

Chosen Methods of Improving Small Object Recognition with Weak Recognizable Features

  • Conference paper
  • First Online:
Advances in Information and Communication (FICC 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 652))

Included in the following conference series:

Abstract

Many object detection models struggle with several problematic aspects of small object detection including the low number of samples, lack of diversity and low features representation. Taking into account that GANs belong to generative models class, their initial objective is to learn to mimic any data distribution. Using the proper GAN model would enable augmenting low precision data increasing their amount and diversity. This solution could potentially result in improved object detection results. Additionally, incorporating GAN-based architecture inside deep learning model can increase accuracy of small objects recognition. In this work the GAN-based method with augmentation is presented to improve small object detection on VOC Pascal dataset. The method is compared with different popular augmentation strategies like object rotations, shifts etc. The experiments are based on FasterRCNN model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ren, S., Ross, K.H., Sun, G.J.: Faster R-CNN: towards real-time object detection with region proposal networks. https://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf

  2. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014). http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

  3. Li, J., Liang, X., Wei, Y., Xu, T., Feng, J., Yan, S.: Perceptual generative adversarial networks for small object detection (2017). https://arxiv.org/pdf/1706.05274.pdf

  4. Everingham, M., van Gool, L., Williams, C., Winn, J., Zisserman, A.: The PASCAL visual object classes homepage (2014). http://host.robots.ox.ac.uk/pascal/VOC/

  5. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation (2014). https://arxiv.org/pdf/1311.2524.pdf

  6. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection (2016). https://arxiv.org/pdf/1506.02640.pdf

  7. Liu, W., et al.: SSD: single shot multibox detector (2016). https://arxiv.org/pdf/1512.02325.pdf

  8. Ledig, C., et al.: Twitter. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network (2017). https://arxiv.org/pdf/1609.04802.pdf

  9. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks (2016). https://arxiv.org/pdf/1511.06434.pdf

  10. Krizhevsky, A., Nair, V., Hinton, G.: Cifar-10, Cifar-100 dataset (2009). https://www.cs.toronto.edu/kriz/cifar.html

  11. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2015). https://arxiv.org/pdf/1409.1556.pdf

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015). https://arxiv.org/pdf/1512.03385.pdf

  13. Frid-Adar, M., Diamant, I., Klang, E., Amitai, M., Goldberger, J., Greenspan, H.: GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification (2018). https://arxiv.org/pdf/1803.01229.pdf

  14. Xiao, C., Li, B., Zhu, J.-Y., He, W., Liu, M., Song, D.: Generating adversarial examples with adversarial networks (2019). https://arxiv.org/pdf/1801.02610.pdf

  15. Lin, T.-Y., et al.: Microsoft COCO: common objects in context (2015). https://arxiv.org/pdf/1405.0312.pdf

  16. Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection (2018). https://arxiv.org/pdf/1708.02002.pdf

  17. Lin, T.-Y., Dollar, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection (2017). https://arxiv.org/pdf/1612.03144.pdf

  18. Hu, P., Ramanan, D.: Finding tiny faces (2017). https://arxiv.org/pdf/1612.04402.pdf

  19. Lim, J.-S., Astrid, M., Yoon, H.-J., Lee, S.-I.: Small object detection using context and attention (2019). https://arxiv.org/pdf/1912.06319.pdf

  20. Hu, G., Yang, Z., Hu, L., Huang, L., Han, J.: Small object detection with multiscale features. Int. J. Digit. Multimedia Broadcast. 1–10 (2018)

    Google Scholar 

  21. Kisantal, M., Wojna, Z., Murawski, J., Naruniec, J., Cho, K.: Augmentation for small object detection (2019). https://arxiv.org/pdf/1902.07296.pdf

  22. Chen, Y., Li, J., Niu, Y., He, J.: Small object detection networks based on classification-oriented super-resolution GAN for UAV aerial imagery. In: Chinese Control And Decision Conference (CCDC), pp. 4610–4615 (2019)

    Google Scholar 

  23. Jiang, W., Ying, N.: Improve object detection by data enhancement based on generative adversarial nets. https://arxiv.org/pdf/1903.01716.pdf

  24. Bai, Y., Zhang, Y., Ding, M., Ghanem, B.: SOD-MTGAN: small object detection via multi-task generative adversarial network (2018)

    Google Scholar 

  25. Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3D object representations for fine-grained categorization. In: 4th International IEEE Workshop on 3D Representation and Recognition (3dRR-13), Sydney, Australia (2013)

    Google Scholar 

  26. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples, arXiv preprint arXiv:1412.6572 (2014)

  27. Goodfellow, I., et al.: Generative adversarial nets. In: NIPS, pp. 2672–2680 (2014)

    Google Scholar 

  28. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Pietroń .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stachoń, M., Pietroń, M. (2023). Chosen Methods of Improving Small Object Recognition with Weak Recognizable Features. In: Arai, K. (eds) Advances in Information and Communication. FICC 2023. Lecture Notes in Networks and Systems, vol 652. Springer, Cham. https://doi.org/10.1007/978-3-031-28073-3_19

Download citation

Publish with us

Policies and ethics