Abstract
Personality perception is an important process that affects our behaviours towards others, with applications across many domains. Automatic personality perception (APP) tools can help create more natural interactions between humans and machines, and better understand human-human interactions. However, collecting personality assessments is a costly and tedious task. This paper presents a new method for zero-shot facial image personality perception tasks. Harnessing the latent psychometric layer of CLIP (Contrastive Language-Image Pre-training), the proposed PsyCLIP is the first zero-shot personality perception model achieving competitive results, compared to state-of-the-art supervised models. With PsyCLIP, we establish the existence of latent psychometric information in CLIP and demonstrate its use in the domain of personality computing. For evaluation, we compiled a new personality dataset consisting of 41800 facial images of various individuals labelled with their corresponding perceived Myers Briggs Type Indicator (MBTI) types. PsyCLIP achieved statistically significant results (p<0.01) in predicting all four Myers Briggs dimensions without requiring any training dataset.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Engines - openai api. https://beta.openai.com/docs/engines/gpt-3. Accessed 22 Apr 2022
The ethics of artificial intelligence: Issues and initiatives: Think tank: European parliament (2020). https://europarl.europa.eu/thinktank/en/document/EPRS_STU634452
Personality database. www.personality-database.com/vote (2022). Accessed 06 Jan 2022
Ali, S., Parikh, D.: Telling creative stories using generative visual aids. arXiv preprint arXiv:2110.14810 (2021)
Biel, J.I., Teijeiro-Mosquera, L., Gatica-Perez, D.: Facetube: predicting personality from facial expressions of emotion in online conversational video. In: Proceedings of the 14th ACM International Conference on Multimodal Interaction, pp. 53–56 (2012)
Borkenau, P., Brecke, S., Möttig, C., Paelecke, M.: Extraversion is accurately perceived after a 50-ms exposure to a face. J. Res. Pers. J. Res. Pers. 43(4), 703–706 (2009). https://doi.org/10.1016/j.jrp.2009.03.007
Brock, A., Donahue, J., Simonyan, K.: Large scale gan training for high fidelity natural image synthesis (2019)
Brown, T.B., et al.: Language Models are Few-Shot Learners. arXiv (2020). arxiv.org/2005.14165v4
Celli, F., Lepri, B.: Is big five better than mbti? a personality computing challenge using twitter data. In: CLiC-it (2018)
Deng, J., et al.: ImageNet: a large-scale hierarchical image database. In: CVPR 2009, pp. 248–255 (2009)
Deng, L.: The mnist database of handwritten digit images for machine learning research. IEEE Sign. Process. Mag. 29(6), 141–142 (2012)
Durupinar, F.: Personality-Driven Gaze Animation with Conditional Generative Adversarial Networks. arXiv (2020). arxiv.org/2012.02224v1
Farnadi, Get al.: Computational personality recognition in social media. User Model. User-Adapt. Interact. 26(2–3), 109–142 (2016)
Furnham, A.: The of big five versus the big four: the relationship between the myers-briggs type indicator (mbti) and neo-pi five factor model personality. Pers. Individ. Differ 21(2), 303–307 (1996)
Goodfellow, I., et al.: Generative adversarial nets. Adv. Neural Inf. Process. Syst. 27 (2014)
Gürpınar, F., Kaya, H., Salah, A.A.: Combining deep facial and ambient features for first impression estimation. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 372–385. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_30
Hermann, I.: Artificial intelligence in fiction: between narratives and metaphors. AI Soc. 1–11 (2021)
Junior, J.C.S.J., et al.: First impressions: a survey on vision-based apparent personality trait analysis. IEEE Trans. Affect. Comput. 1 (2019). https://doi.org/10.1109/TAFFC.2019.2930058
Kachur, A., Osin, E., Davydov, D., Shutilov, K., Novokshonov, A.: Assessing the big five personality traits using real-life static facial images. Sci. Rep. 10(8487), 1–11 (2020). https://doi.org/10.1038/s41598-020-65358-6
Kenny, D.A.: Person: a general model of interpersonal perception. Pers. Soc. Psychol. Rev. 8(3), 265–280 (2004)
Kramer, R.S., King, J.E., Ward, R.: Identifying personality from the static, nonexpressive face in humans and chimpanzees: evidence of a shared system for signaling personality. Evol. Hum. Behav. 32(3), 179–185 (2011)
Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X., Pietikäinen, M.: Deep learning for generic object detection: a survey. Int. J. Comput. Vis. 128(2), 261–318 (2019). https://doi.org/10.1007/s11263-019-01247-4
lucidrain: Github - lucidrains/big-sleep. http://github.com/lucidrains/big-sleep (2021). Accessed 06 Jan 2022
lucidrain: Github - lucidrains/deep-daze. http://github.com/lucidrains/deep-daze (2021). Accessed 06 Jan 2022
Majumder, N., Poria, S., Gelbukh, A., Cambria, E.: Deep learning-based document modeling for personality detection from text. IEEE Intell. Syst. 32(2), 74–79 (2017)
Mohammadi, G., Vinciarelli, A.: Automatic personality perception: prediction of trait attribution based on prosodic features. IEEE Trans. Affect. Comput. 3(3), 273–284 (2012)
Mohammadi, G., Vinciarelli, A.: Automatic personality perception: prediction of trait attribution based on prosodic features extended abstract. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 484–490. IEEE (2015)
Mohammadi, G., Vuilleumier, P.: A multi-componential approach to emotion recognition and the effect of personality. IEEE Trans. Affect. Comput. (2020)
Myers, I.B.: The myers-briggs type indicator: Manual (1962) (1962)
Naumann, L.P., Vazire, S., Rentfrow, P.J., Gosling, S.D.: Personality judgments based on physical appearance. Pers. Soc. Psychol. Bull. 35(12), 1661–1671 (2009). https://doi.org/10.1177/0146167209346309
Oosterhof, N.N., Todorov, A.: The functional basis of face evaluation. Proc. Natl. Acad. Sci. 105(32), 11087–11092 (2008)
Patil, S.M., Singh, R., Patil, P., Pathare, N.: Personality prediction using digital footprints. In: 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS), pp. 1736–1742. IEEE (2021)
Radford, A., et al.: Learning transferable visual models from natural language supervision. arXiv preprint arXiv:2103.00020 (2021)
Ruane, E., Farrell, S., Ventresque, A.: User Perception of Text-Based Chatbot Personality. In: Følstad, A., Araujo, T., Papadopoulos, S., Law, E.L.-C., Luger, E., Goodwin, M., Brandtzaeg, P.B. (eds.) CONVERSATIONS 2020. LNCS, vol. 12604, pp. 32–47. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68288-0_3
Salgado, J.F.: The big five personality dimensions and counterproductive behaviors. Int. J. Select. Assess. 10(1–2), 117–125 (2002)
Shevlin, M., Walker, S., Davies, M., Banyard, P., Lewis, C.A.: Can you judge a book by its cover? evidence of self-stranger agreement on personality at zero acquaintance. Pergamon-Elsevier (2003). http://irep.ntu.ac.uk/id/eprint/16819
Sijtsma, K.: Introduction to the measurement of psychological attributes. Measurement 44(7), 1209–1219 (2011)
Ruane, E., Farrell, S., Ventresque, A.: User perception of text-based chatbot personality. In: Følstad, A., et al. (eds.) CONVERSATIONS 2020. LNCS, vol. 12604, pp. 32–47. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68288-0_3
Uleman, J.S., Adil Saribay, S., Gonzalez, C.M.: Spontaneous inferences, implicit impressions, and implicit theories. Annu. Rev. Psychol. 59, 329–360 (2008)
Upadhyay, A.K., Khandelwal, K.: Applying artificial intelligence: implications for recruitment. Strat. HR Rev. (2018)
Valente, F., Kim, S., Motlicek, P.: Annotation and recognition of personality traits in spoken conversations from the AMI meetings corpus. In: Thirteenth Annual Conference of the International Speech Communication Association (2012)
Vinciarelli, A., Mohammadi, G.: A Survey of Personality Computing. IEEE Trans. Affect. Comput. 5(3) (2014). DOI: https://doi.org/10.1109/TAFFC.2014.2330816
Walker, M., Vetter, T.: Changing the personality of a face: perceived big two and big five personality factors modeled in real photographs. J. Pers. Soc. Psychol. 110(4), 609–624 (2016). https://doi.org/10.1037/pspp0000064
Yu, J., Markov, K.: Deep learning based personality recognition from facebook status updates. In: 2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST), pp. 383–387. IEEE, Taichung (2017). https://doi.org/10.1109/ICAwST.2017.8256484, https://ieeexplore.ieee.org/document/8256484/
Yu, M., Gilmartin, E., Litman, D.: Identifying personality traits using overlap dynamics in multiparty dialogue. arXiv preprint arXiv:1909.00876 (2019)
Zou, Z., Shi, Z., Guo, Y., Ye, J.: Object Detection in 20 Years: A Survey. ResearchGate (2019). www.researchgate.net/publication/333077580
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Gan, P.Z., Sowmya, A., Mohammadi, G. (2022). Zero-shot Personality Perception From Facial Images. In: Aziz, H., Corrêa, D., French, T. (eds) AI 2022: Advances in Artificial Intelligence. AI 2022. Lecture Notes in Computer Science(), vol 13728. Springer, Cham. https://doi.org/10.1007/978-3-031-22695-3_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-22695-3_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-22694-6
Online ISBN: 978-3-031-22695-3
eBook Packages: Computer ScienceComputer Science (R0)