[go: up one dir, main page]

Skip to main content

3D Face Reconstruction with Mobile Phone Cameras for Rare Disease Diagnosis

  • Conference paper
  • First Online:
AI 2022: Advances in Artificial Intelligence (AI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13728))

Included in the following conference series:

Abstract

Computer vision technology is advancing rare disease diagnosis to address unmet needs of the more than 300 million individuals affected globally; one in three rare diseases have a known facial phenotype. 3D face model reconstruction is a key driver of these advances. However, the utility of 3D reconstruction from images obtained from mobile phone cameras has been questionable due to relatively low quality 2D data and need external calibration methods (e.g. visual markers) to extract accurate measurements. Herein a novel implementation pipeline, leveraging deep learning technologies, that can successfully reconstruct 3D face models from multiple 2D images taken by mobile phone cameras for clinician usage is described. Specifically, Multi-view Stereo (MVS) has been introduced to this application for providing a cost-effective pipeline of 3D face dense reconstruction. As a state-of-the-art MVS method, deep-learning based MVS has shown its strong generalization capability of using the low quality 2D face images to reconstruct 3D face models without camera calibration. The results demonstrate conceptual proof of a analytic pipeline to satisfy the clinician’s needs.

Supported by The Centre for Research Excellence in Neurocognitive Disorders, Neuroscience Research Australia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baynam, G., et al.: 3-dimensional facial analysis-facing precision public health. Front. Pub. Health 5, 1–6 (2017). https://doi.org/10.3389/fpubh.2017.00031

  2. Beeler, T., Bickel, B., Beardsley, P., Sumner, B., Gross, M.: High-quality single-shot capture of facial geometry. In: ACM SIGGRAPH 2010 Papers, pp. 1–9 (2010)

    Google Scholar 

  3. Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 187–194 (1999)

    Google Scholar 

  4. Chang, J.R., Chen, Y.S.: Pyramid stereo matching network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5410–5418 (2018)

    Google Scholar 

  5. Cheng, S., et al.: Deep stereo using adaptive thin volume representation with uncertainty awareness. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2524–2534 (2020)

    Google Scholar 

  6. Collins, R.T.: A space-sweep approach to true multi-image matching. In: Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 358–363. IEEE (1996)

    Google Scholar 

  7. Duggal, S., Wang, S., Ma, W.C., Hu, R., Urtasun, R.: DeepPruner: learning efficient stereo matching via differentiable PatchMatch. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4384–4393 (2019)

    Google Scholar 

  8. Galliani, S., Lasinger, K., Schindler, K.: Massively parallel multiview stereopsis by surface normal diffusion. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 873–881 (2015)

    Google Scholar 

  9. Ghosh, A., Fyffe, G., Tunwattanapong, B., Busch, J., Yu, X., Debevec, P.: Multiview face capture using polarized spherical gradient illumination. In: Proceedings of the 2011 SIGGRAPH Asia Conference, pp. 1–10 (2011)

    Google Scholar 

  10. Gu, X., Fan, Z., Zhu, S., Dai, Z., Tan, F., Tan, P.: Cascade cost volume for high-resolution multi-view stereo and stereo matching. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2495–2504 (2020)

    Google Scholar 

  11. Haendel, M., et al.: How many rare diseases are there? Nat. Rev. Drug Discov. 19(2), 77–78 (2020). https://doi.org/10.1038/d41573-019-00180-y

  12. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge, New York (2003)

    Google Scholar 

  13. Jensen, R., Dahl, A., Vogiatzis, G., Tola, E., Aanæs, H.: Large scale multi-view stereopsis evaluation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 406–413 (2014)

    Google Scholar 

  14. Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proceedings of the 4th Eurographics Symposium on Geometry Processing, vol. 7 (2006)

    Google Scholar 

  15. Kendall, A., et al.: End-to-end learning of geometry and context for deep stereo regression. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 66–75 (2017)

    Google Scholar 

  16. Knapitsch, A., Park, J., Zhou, Q.Y., Koltun, V.: Tanks and temples: benchmarking large-scale scene reconstruction. ACM Trans. Graph. (ToG) 36(4), 1–13 (2017)

    Google Scholar 

  17. Kung, S., et al.: Monitoring of therapy for mucopolysaccharidosis type i using dysmorphometric facial phenotypic signatures. In: Zschocke, J., Baumgartner, M., Morava, E., Patterson, M., Rahman, S., Peters, V. (eds.) JIMD Reports, Volume 22. JR, vol. 22, pp. 99–106. Springer, Heidelberg (2015). https://doi.org/10.1007/8904_2015_417

    Chapter  Google Scholar 

  18. Morales, A., Piella, G., Sukno, F.M.: Survey on 3D face reconstruction from uncalibrated images. Comput. Sci. Rev. 40, 100400 (2021). https://doi.org/10.1016/j.cosrev.2021.100400

    Article  Google Scholar 

  19. Ng, P.C., Henikoff, S.: SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res. 31(13), 3812–3814 (2003)

    Article  Google Scholar 

  20. Palmer, R.L., Helmholz, P., Baynam, G.: Cliniface: phenotypic visualisation and analysis using non-rigid registration of 3D facial images. Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. - ISPRS Arch. 43(B2), 301–308 (2020). https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-301-2020

    Article  Google Scholar 

  21. Poulton, C., Thomas, Y.: Scanning a new landscape, 22–24 March 2020

    Google Scholar 

  22. Rai, M.C.E.L., Werghi, N., Al Muhairi, H., Alsafar, H.: Using facial images for the diagnosis of genetic syndromes: a survey. In: 2015 International Conference on Communications, Signal Processing, and their Applications, ICCSPA 2015, pp. 1–6. IEEE (2015)

    Google Scholar 

  23. Rubinstein, Y.R., et al.: The case for open science: rare diseases. JAMIA Open 3(3), 472–486 (2020). https://doi.org/10.1093/jamiaopen/ooaa030

    Article  Google Scholar 

  24. Schonberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4104–4113 (2016)

    Google Scholar 

  25. Schops, T., et al.: A multi-view stereo benchmark with high-resolution images and multi-camera videos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3260–3269 (2017)

    Google Scholar 

  26. Wang, F., Galliani, S., Vogel, C., Speciale, P., Pollefeys, M.: PatchmatchNet: learned multi-view patchmatch stereo. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14194–14203 (2021)

    Google Scholar 

  27. Woodham, R.J.: Photometric method for determining surface orientation from multiple images. Opt. Eng. 19(1), 191139 (1980)

    Article  Google Scholar 

  28. Xiao, Y., Zhu, H., Yang, H., Diao, Z., Lu, X., Cao, X.: Detailed facial geometry recovery from multi-view images by learning an implicit function. arXiv preprint arXiv:2201.01016 (2022)

  29. Xu, Q., Tao, W.: Multi-scale geometric consistency guided multi-view stereo. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5483–5492 (2019)

    Google Scholar 

  30. Yang, J., Mao, W., Alvarez, J.M., Liu, M.: Cost volume pyramid based depth inference for multi-view stereo. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4877–4886 (2020)

    Google Scholar 

  31. Yao, Y., Luo, Z., Li, S., Fang, T., Quan, L.: MVSNet: depth inference for unstructured multi-view stereo. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 785–801. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_47

    Chapter  Google Scholar 

  32. Yao, Y., Luo, Z., Li, S., Shen, T., Fang, T., Quan, L.: Recurrent MVSNet for high-resolution multi-view stereo depth inference. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5525–5534 (2019)

    Google Scholar 

  33. Zeng, D., Zhao, Q., Long, S., Li, J.: Examplar coherent 3D face reconstruction from forensic Mugshot database. Image Vis. Comput. 58, 193–203 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiwei Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Y., Li, L., An, S., Helmholz, P., Palmer, R., Baynam, G. (2022). 3D Face Reconstruction with Mobile Phone Cameras for Rare Disease Diagnosis. In: Aziz, H., Corrêa, D., French, T. (eds) AI 2022: Advances in Artificial Intelligence. AI 2022. Lecture Notes in Computer Science(), vol 13728. Springer, Cham. https://doi.org/10.1007/978-3-031-22695-3_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22695-3_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22694-6

  • Online ISBN: 978-3-031-22695-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics