Abstract
Explainable artificial intelligence (XAI) is a recent research focus, aiming to gain trust in machine learning models with clear insights into how the models make certain predictions. Due to its ability to evolve potentially interpretable classifiers, genetic programming (GP) is generally well-suited to XAI. However, many learning algorithms including GP usually learn a single best model. In practice, the best model in terms of training classification accuracy/error rate may not be the most appropriate one from the perspective of a domain expert due to overfitting and limited data. Multiple explicit and high-quality classifiers with the same training performance are therefore needed to increase the chances that the generated models will be considered more reasonable to experts. Therefore, this study designs a niching-assisted GP approach for classification. The results show that the proposed method can significantly increase the classification accuracy on most of the tested datasets. Further analysis shows that the designed algorithm can find different GP programs with the same classification performance, providing good interpretability for classification tasks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Each individual or solution in GP is a classifier or a program with a tree representation. Therefore, this work treats individual, solution, classifier, tree, program in GP as the same.
References
Ahmed, S., Zhang, M., Peng, L.: Enhanced feature selection for biomarker discovery in LC-MS data using gp. In: IEEE Congress on Evolutionary Computation, pp. 584ā591 (2013)
Ahmed, S., Zhang, M., Peng, L., Xue, B.: Multiple feature construction for effective biomarker identification and classification using genetic programming. In: Annual Conference on Genetic and Evolutionary Computation, pp. 249ā256 (2014)
Bi, Y., Xue, B., Zhang, M.: Genetic Programming for Image Classification: An Automated approach to Feature Learning, vol. 24. Springer, Heidleberg (2021). https://doi.org/10.1007/978-3-030-65927-1
De Rainville, F.M., Fortin, F.A., Gardner, M.A., Parizeau, M., GagnĆ©, C.: Deap: a python framework for evolutionary algorithms. In: Annual Conference Companion on Genetic and Evolutionary Computation, pp. 85ā92 (2012)
Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml
Harada, T., Murano, K., Thawonmas, R.: Proposal of multimodal program optimization benchmark and its application to multimodal genetic programming. In: IEEE Congress on Evolutionary Computation, pp. 1ā8. IEEE (2020)
Kamyab, S., Eftekhari, M.: Feature selection using multimodal optimization techniques. Neurocomputing 171, 586ā597 (2016)
Koza, J.R., Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection, vol. 1. MIT press, Cambridge (1992)
Lensen, A.: Mining feature relationships in data. In: Hu, T., LourenƧo, N., Medvet, E. (eds.) EuroGP 2021. LNCS, vol. 12691, pp. 247ā262. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72812-0_16
Lensen, A., Xue, B., Zhang, M.: Genetic programming for evolving similarity functions for clustering: representations and analysis. Evol. Comput. 28(4), 531ā561 (2020)
Li, H., Zhang, Q.: Multiobjective optimization problems with complicated pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13(2), 284ā302 (2008)
Liu, J., Xu, C., Yang, W., Shu, Y., Zheng, W., Zhou, F.: Multiple similarly effective solutions exist for biomedical feature selection and classification problems. Sci. Rep. 7(1), 1ā10 (2017)
Muni, D.P., Pal, N.R., Das, J.: Genetic programming for simultaneous feature selection and classifier design. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 36(1), 106ā117 (2006)
Nag, K., Pal, N.R.: A multiobjective genetic programming-based ensemble for simultaneous feature selection and classification. IEEE Trans. Cybern. 46(2), 499ā510 (2015)
Nag, K., Pal, N.R.: Feature extraction and selection for parsimonious classifiers with multiobjective genetic programming. IEEE Trans. Evol. Comput. 24, 454ā466 (2019)
Neshatian, K., Zhang, M.: Genetic programming for feature subset ranking in binary classification problems. In: Vanneschi, L., Gustafson, S., Moraglio, A., De Falco, I., Ebner, M. (eds.) EuroGP 2009. LNCS, vol. 5481, pp. 121ā132. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01181-8_11
Neshatian, K., Zhang, M.: Pareto front feature selection: using genetic programming to explore feature space. In: Annual Conference on Genetic and Evolutionary Computation, pp. 1027ā1034 (2009)
Pei, W., Xue, B., Shang, L., Zhang, M.: High-dimensional unbalanced binary classification by genetic programming with multi-criterion fitness evaluation and selection. Evol. Comput. 30(1), 99ā129 (2022)
Pletzer, A., Hayek, W., Scott, C., Corrie, B., Rae, G.: How NeSI helps users run better and faster on New Zealandās supercomputing platforms. In: IEEE International Conference on e-Science (e-Science), pp. 465ā466 (2017)
Poursabzi-Sangdeh, F., Goldstein, D.G., Hofman, J.M., Vaughan, J.W., Wallach, H.: Manipulating and measuring model interpretability. arXiv preprint arXiv:1802.07810 (2018)
Sijben, E., Alderliesten, T., Bosman, P.A.: Multi-modal multi-objective model-based genetic programming to find multiple diverse high-quality models. In: Genetic and Evolutionary Computation Conference, pp. 440ā448 (2022)
Street, W.N., Wolberg, W.H., Mangasarian, O.L.: Nuclear feature extraction for breast tumor diagnosis. In: Biomedical Image Processing and Biomedical Visualization, vol. 1905, pp. 861ā870. SPIE (1993)
Tran, B., Xue, B., Zhang, M.: Genetic programming for feature construction and selection in classification on high-dimensional data. Memetic Comput. 8(1), 3ā15 (2016)
Uy, N.Q., Hien, N.T., Hoai, N.X., OāNeill, M.: Improving the generalisation ability of genetic programming with semantic similarity based crossover. In: Esparcia-AlcĆ”zar, A.I., EkĆ”rt, A., Silva, S., Dignum, S., Uyar, A.Å (eds.) EuroGP 2010. LNCS, vol. 6021, pp. 184ā195. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12148-7_16
Vanneschi, L., Tomassini, M., Clergue, M., Collard, P.: Difficulty of unimodal and multimodal landscapes in genetic programming. In: CantĆŗ-Paz, E., et al. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1788ā1799. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45110-2_70
Wang, P., Xue, B., Liang, J., Zhang, M.: Multiobjective differential evolution for feature selection in classification. IEEE Trans. Cybern. (2021). https://doi.org/10.1109/TCYB.2021.3128540
Wang, P., Xue, B., Liang, J., Zhang, M.: Differential evolution based feature selection: a niching-based multi-objective approach. IEEE Trans. Evol. Comput. (2022). https://doi.org/10.1109/TEVC.2022.3168052
Xu, H., Xue, B., Zhang, M.: A duplication analysis-based evolutionary algorithm for biobjective feature selection. IEEE Trans. Evol. Comput. 25(2), 205ā218 (2020)
Yoshida, S., Harada, T., Thawonmas, R.: Multimodal genetic programming by using tree structure similarity clustering. In: International Workshop on Computational Intelligence and Applications, pp. 85ā90 (2017)
Yue, C., Liang, J., Qu, B., Yu, K., Song, H.: Multimodal multiobjective optimization in feature selection. In: IEEE Congress on Evolutionary Computation, pp. 302ā309 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Ā© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, P., Xue, B., Liang, J., Zhang, M. (2022). Niching-Assisted Genetic Programming forĀ Finding Multiple High-Quality Classifiers. In: Aziz, H., CorrĆŖa, D., French, T. (eds) AI 2022: Advances in Artificial Intelligence. AI 2022. Lecture Notes in Computer Science(), vol 13728. Springer, Cham. https://doi.org/10.1007/978-3-031-22695-3_20
Download citation
DOI: https://doi.org/10.1007/978-3-031-22695-3_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-22694-6
Online ISBN: 978-3-031-22695-3
eBook Packages: Computer ScienceComputer Science (R0)