[go: up one dir, main page]

Skip to main content

SMTWM: Secure Multiple Types Wildcard Pattern Matching Protocol from Oblivious Transfer

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13777))

  • 1697 Accesses

Abstract

Secure wildcard pattern matching (SWPM) involves both sender and receiver entities, where the sender holds long text and the receiver holds short pattern containing wildcard characters. The receiver only learns the position information which the short pattern string appears in the long text string, and does not disclose any information to either party other than the input length. However, standard SWPM considers single kind of wildcard which is not suitable in many scenarios, e.g., normal genes mutate into different kinds of mutated genes in the gene matching scenario.

In our study, to better address the above problem, we construct an extended SWPM variant called secure multiple types wildcard pattern matching (SMTWM). In SMTWM functionality, the pattern contains multiple types of wildcard characters, such as (*, #). Besides, wildcards of each type can match special and different characters in the text. Considering the DNA sequence which contains ‘AGCT’ as example, the wildcard ‘*’ can match A and G, and the whidcard ‘#’ can match C and T. We propose a SMTWM protocol based on the oblivious transfer (OT) and the private equality test (PEQT) protocol in semi-honest model. Furthermore, the protocol simply needs a few number of public key operations and some fast symmetric key primitive using OT extension technique. Our experiments have shown that when the length of pattern is \(2^{8}\) and the length of text is \(2^{16}\), the running time is less than 0.4 and 2.5 s in the LAN and WAN.

This work was supported by the China Postdoctoral Science Foundation (2018M632712), the National Natural Science Foundation of China for Young Scientists (61802235) and the National Natural Science Foundation of China (62071280).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kim, M., Lee, H.T., Ling, S., Tan, B.H.M., Wang, H.: Private compound wildcard queries using fully homomorphic encryption. IEEE Trans. Dependable Secur. Comput. 16(5), 743–756 (2019)

    Article  Google Scholar 

  2. Chase, M., Shen, E.: Substring-searchable symmetric encryption. Proc. Priv. Enhancing Technol. 2015(2), 263–281 (2015)

    Article  Google Scholar 

  3. Faber, S., Jarecki, S., Krawczyk, H., Nguyen, Q., Rosu, M., Steiner, M.: Rich queries on encrypted data: beyond exact matches. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015, Part II. LNCS, vol. 9327, pp. 123–145. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24177-7_7

    Chapter  Google Scholar 

  4. Yasuda, M., Shimoyama, T., Kogure, J., Yokoyama, K., Koshiba, T.: Secure pattern matching using somewhat homomorphic encryption. In: Juels, A., Parno, B. (eds.) CCSW 2013, Proceedings of the 2013 ACM Cloud Computing Security Workshop, Co-located with CCS 2013, Berlin, Germany, 4 November 2013, pp. 65–76. ACM (2013)

    Google Scholar 

  5. Yasuda, M., Shimoyama, T., Kogure, J., Yokoyama, K., Koshiba, T.: Privacy-preserving wildcards pattern matching using symmetric somewhat homomorphic encryption. In: Susilo, W., Mu, Y. (eds.) ACISP 2014. LNCS, vol. 8544, pp. 338–353. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08344-5_22

    Chapter  MATH  Google Scholar 

  6. Frikken, K.B.: Practical private DNA string searching and matching through efficient oblivious automata evaluation. In: Gudes, E., Vaidya, J. (eds.) DBSec 2009. LNCS, vol. 5645, pp. 81–94. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03007-9_6

    Chapter  Google Scholar 

  7. Troncoso-Pastoriza, J.R., Katzenbeisser, S., Celik, M.U.: Privacy preserving error resilient DNA searching through oblivious automata. In: Ning, P., di Vimercati, S.D.C., Syverson, P.F. (eds.) Proceedings of the 2007 ACM Conference on Computer and Communications Security, CCS 2007, Alexandria, Virginia, USA, 28–31 October 2007, pp. 519–528. ACM (2007)

    Google Scholar 

  8. Blanton, M., Aliasgari, M.: Secure outsourcing of DNA searching via finite automata. In: Foresti, S., Jajodia, S. (eds.) DBSec 2010. LNCS, vol. 6166, pp. 49–64. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13739-6_4

    Chapter  Google Scholar 

  9. Katz, J., Malka, L.: Secure text processing with applications to private DNA matching. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) Proceedings of the 17th ACM Conference on Computer and Communications Security, CCS 2010, Chicago, Illinois, USA, 4–8 October 2010, pp. 485–492. ACM (2010)

    Google Scholar 

  10. Baron, J., El Defrawy, K., Minkovich, K., Ostrovsky, R., Tressler, E.: 5PM: secure pattern matching. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 222–240. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32928-9_13

    Chapter  Google Scholar 

  11. Beck, M., Kerschbaum, F.: Approximate two-party privacy-preserving string matching with linear complexity. In: IEEE International Congress on Big Data, BigData Congress 2013, Santa Clara, CA, USA, 27 June 2013–2 July 2013, pp. 31–37. IEEE Computer Society (2013)

    Google Scholar 

  12. Defrawy, K.E., Faber, S.: Blindfolded data search via secure pattern matching. Computer 46(12), 68–75 (2013)

    Article  Google Scholar 

  13. Hazay, C., Toft, T.: Computationally secure pattern matching in the presence of malicious adversaries. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 195–212. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_12

    Chapter  MATH  Google Scholar 

  14. Naehrig, M., Lauter, K.E., Vaikuntanathan, V.: Can homomorphic encryption be practical? In: Cachin, C., Ristenpart, T. (eds.) Proceedings of the 3rd ACM Cloud Computing Security Workshop, CCSW 2011, Chicago, IL, USA, 21 October 2011, pp. 113–124. ACM (2011)

    Google Scholar 

  15. Hazay, C., Toft, T.: Computationally secure pattern matching in the presence of malicious adversaries. J. Cryptol. 27(2), 358–395 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kolesnikov, V., Rosulek, M., Trieu, N.: SWiM: secure wildcard pattern matching from OT extension. In: Meiklejohn, S., Sako, K. (eds.) FC 2018. LNCS, vol. 10957, pp. 222–240. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-58387-6_12

    Chapter  Google Scholar 

  17. Wei, X., Xu, L., Zhao, M., Wang, H.: Secure extended wildcard pattern matching protocol from cut-and-choose oblivious transfer. Inf. Sci. 529, 132–140 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Saha, T.K., Rathee, D., Koshiba, T.: Effcient protocols for private wildcards pattern matching. J. Inf. Secur. Appl. 55, 102609 (2020)

    Google Scholar 

  19. Jarrous, A., Pinkas, B.: Secure hamming distance based computation and its applications. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 107–124. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01957-9_7

    Chapter  Google Scholar 

  20. Vergnaud, D.: Efficient and secure generalized pattern matching via fast fourier transform. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp. 41–58. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21969-6_3

    Chapter  Google Scholar 

  21. Wei, X., Zhao, M., Xu, Q.: Efficient and secure outsourced approximate pattern matching protocol. Soft. Comput. 22(4), 1175–1187 (2018)

    Article  MATH  Google Scholar 

  22. Liu, N., Xie, F., Wu, X.: Suffx array for multi-pattern matching with variable length wildcards. Intell. Data Anal. 25(2), 283–303 (2021)

    Article  Google Scholar 

  23. Vaiwsri, S., Ranbaduge, T., Christen, P., Ng, K.S.: Accurate and efficient suffix tree based privacy-preserving string matching, CoRR abs/2104.03018 (2021). arXiv:2104.03018

  24. Faust, S., Hazay, C., Venturi, D.: Outsourced pattern matching. Int. J. Inf. Secur. 17(3), 327–346 (2018)

    Article  MATH  Google Scholar 

  25. Li, D., Dong, X., Cao, Z.: Secure and privacy-preserving pattern matching in outsourced computing. Secur. Commun. Netw. 9(16), 3444–3451 (2016)

    Article  Google Scholar 

  26. Zhang, T., Wang, X., Chow, S.S.M.: Privacy-preserving multi-pattern matching. In: Deng, R., Weng, J., Ren, K., Yegneswaran, V. (eds.) SecureComm 2016. LNICST, vol. 198, pp. 199–218. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59608-2_11

    Chapter  Google Scholar 

  27. Zhou, J., Choo, K.R., Cao, Z., Dong, X.: PVOPM: verifiable privacy-preserving pattern matching with efficient outsourcing in the malicious setting. IEEE Trans. Dependable Secur. Comput. 18(5), 2253–2270 (2021)

    Google Scholar 

  28. Rabin, M.O.: How to exchange secrets with oblivious transfer. IACR Cryptology ePrint Archive 450/187 (2005)

    Google Scholar 

  29. Goldreich, O.: The Foundations of Cryptography - Volume 2: Basic Applications. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  30. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A completeness theorem for protocols with honest majority. In: Aho, A.V. (ed.) Proceedings of the 19th Annual ACM Symposium on Theory of Computing, New York, USA, pp. 218–229. ACM, New York (1987)

    Google Scholar 

  31. Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching with security against malicious and covert adversaries. J. Cryptol. 23(3), 422–456 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_9

    Chapter  Google Scholar 

  33. Kolesnikov, V., Kumaresan, R., Rosulek, M.: Efficient batched oblivious PRF with application to private set intersection. In: Proceedings of the 23rd ACM SIGSAC Conference on Computer and Communications Security, pp. 818–829. ACM, New York (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaochao Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ding, S., Wei, X., Xu, L., Wang, H. (2023). SMTWM: Secure Multiple Types Wildcard Pattern Matching Protocol from Oblivious Transfer. In: Meng, W., Lu, R., Min, G., Vaidya, J. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2022. Lecture Notes in Computer Science, vol 13777. Springer, Cham. https://doi.org/10.1007/978-3-031-22677-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22677-9_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22676-2

  • Online ISBN: 978-3-031-22677-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics