[go: up one dir, main page]

Skip to main content

Dynamic Optimization of Energy Hubs with Evolutionary Algorithms Using Adaptive Time Segments and Varying Resolution

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2022 (IDEAL 2022)

Abstract

Many Renewable Energy Sources (RESs) need to be installed and integrated into the existing grid infrastructure for further developing the energy system towards a 100% RESs supply. To provide the required flexibility for actively compensating local volatile power fluctuations caused e.g. by RES, scheduling of controllable Distributed Energy Resources (DERs) using the concept of Energy Hubs (EHs) and their integration into power networks is a promising approach. The complexity of optimized operation of such EHs while simultaneously providing the required flexibility can be faced by using Evolutionary Algorithms (EAs) for calculating the schedules of internal components of the EHs. To focus the computational effort of the used EA on more important time segments of the problem space, a dynamic optimization method with adaptive time intervals and time resolution is presented. The method improves the quality of the optimization in form of better approximation to a given target value an EH can follow. The proposed approach leads to an average reduction of 11% in the Root Mean Squared Error (RMSE) between target value and measurement by appropriate increased calculation time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://unfccc.int/sites/default/files/english_paris_agreement.pdf visited 14.04.2022.

References

  1. Bao, Z., Zhou, Q., Yang, Z., Yang, Q., Xu, L., Wu, T.: A multi time-scale and multi energy-type coordinated microgrid scheduling solution-part i: model and methodology. IEEE Trans. Power Syst. 30, 2257–2266 (2015). https://doi.org/10.1109/TPWRS.2014.2367127

    Article  Google Scholar 

  2. Blume, C., Jakob, W.: Gleam - general learning evolutionary algorithm and method: Ein evolutionärer algorithmus und seine anwendungen. Schriftenreihe des Instituts für Angewandte Informatik - Automatisierungstechnik, Universität Karlsruhe (TH), vol. 32. KIT Scientific Publishing (2009). https://doi.org/10.5445/KSP/1000013553

  3. Cheng, S., Wang, R., Xu, J., Wei, Z.: Multi-time scale coordinated optimization of an energy hub in the integrated energy system with multi-type energy storage systems. Sustain. Energy Technol. Assess. 47, 101327 (2021). https://doi.org/10.1016/j.seta.2021.101327

    Article  Google Scholar 

  4. Fiorini, L., Aiello, M.: Energy management for user’s thermal and power needs: a survey. Energy Rep. 5, 1048–1076 (2019). https://doi.org/10.1016/j.egyr.2019.08.003

    Article  Google Scholar 

  5. Geidl, M., Andersson, G.: A modeling and optimization approach for multiple energy carrier power flow, pp. 1–7 (2005). https://doi.org/10.1109/PTC.2005.4524640

  6. Geidl, M., Andersson, G.: Optimal power flow of multiple energy carriers. IEEE Trans. Power Syst. 22(1), 145–155 (2007). https://doi.org/10.1109/TPWRS.2006.888988

    Article  Google Scholar 

  7. Geidl, M., Koeppel, G., Favre-Perrod, P., Klockl, B., Andersson, G., Frohlich, K.: Energy hubs for the future. IEEE Power Energ. Mag. 5(1), 24–30 (2007). https://doi.org/10.1109/MPAE.2007.264850

    Article  Google Scholar 

  8. Jakob, W., Quinte, A., Stucky, K.-U., Süß, W.: Fast multi-objective scheduling of jobs to constrained resources using a hybrid evolutionary algorithm. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 1031–1040. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87700-4_102

    Chapter  Google Scholar 

  9. Khalloof, H., et al.: A generic distributed microservices and container based framework for metaheuristic optimization. In: Proceedings of the Genetic and Evolutionary Conference Companion, Kyoto, Japan, 15–19 July 2018, pp. 1363–1370. Association for Computing Machinery (ACM) (2018). https://doi.org/10.1145/3205651.3208253

  10. Khalloof, H., Jakob, W., Shahoud, S., Duepmeier, C., Hagenmeyer, V.: A generic scalable method for scheduling distributed energy resources using parallelized population-based metaheuristics. In: Arai, K., Kapoor, S., Bhatia, R. (eds.) FTC 2020. AISC, vol. 1289, pp. 1–21. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-63089-8_1

    Chapter  Google Scholar 

  11. Kurita, A., et al.: Multiple time-scale power system dynamic simulation. IEEE Trans. Power Syst. 8, 216–223 (1993). https://doi.org/10.1109/59.221237

    Article  Google Scholar 

  12. Le, K.D., Day, J.T.: Rolling horizon method: a new optimization technique for generation expansion studies. PAS-101, 3112–3116 (1982). https://doi.org/10.1109/TPAS.1982.317523

  13. Li, C., et al.: A time-scale adaptive dispatch method for renewable energy power supply systems on islands. IEEE Trans. Smart Grid 7, 1069–1078 (2016). https://doi.org/10.1109/TSG.2015.2485664

    Article  Google Scholar 

  14. Maroufmashat, A., Taqvi, S.T., Miragha, A., Fowler, M., Elkamel, A.: Modeling and optimization of energy hubs: a comprehensive review. Inventions 4, 50 (2019)

    Article  Google Scholar 

  15. Mehdi, R.A.: Scheduling deferrable appliances and energy resources of a smart home applying multi-time scale stochastic model predictive control. Sustain. Cities Soc. 32, 338–347 (2017). https://doi.org/10.1016/j.scs.2017.04.006

    Article  Google Scholar 

  16. Poppenborg, R., et al.: Energy hub gas: a multi-domain system modelling and co-simulation approach. In: Proceedings of the 9th Workshop on Modeling and Simulation of Cyber-Physical Energy Systems, no. 12. Association for Computing Machinery (2021). https://doi.org/10.1145/3470481.3472712

  17. Qiu, H., Gu, W., Xu, Y., Zhao, B.: Multi-time-scale rolling optimal dispatch for ac/dc hybrid microgrids with day-ahead distributionally robust scheduling. IEEE Trans. Sustain. Energy 10, 1653–1663 (2019). https://doi.org/10.1109/TSTE.2018.2868548

    Article  Google Scholar 

  18. Xia, S., Ding, Z., Du, T., Zhang, D., Shahidehpour, M., Ding, T.: Multitime scale coordinated scheduling for the combined system of wind power, photovoltaic, thermal generator, hydro pumped storage, and batteries. IEEE Trans. Ind. Appl. 56(3), 2227–2237 (2020). https://doi.org/10.1109/TIA.2020.2974426

    Article  Google Scholar 

  19. Yang, H., Li, M., Jiang, Z., Zhang, P.: Multi-time scale optimal scheduling of regional integrated energy systems considering integrated demand response. IEEE Access 8, 5080–5090 (2020). https://doi.org/10.1109/ACCESS.2019.2963463

    Article  Google Scholar 

  20. Yi, Z., Xu, Y., Gu, W., Wu, W.: A multi-time-scale economic scheduling strategy for virtual power plant based on deferrable loads aggregation and disaggregation. IEEE Trans. Sustain. Energy 11, 1332–1346 (2020). https://doi.org/10.1109/TSTE.2019.2924936

    Article  Google Scholar 

  21. Zafar, R., Ravishankar, J., Fletcher, J.E., Pota, H.R.: Multi-timescale model predictive control of battery energy storage system using conic relaxation in smart distribution grids. IEEE Trans. Power Syst. 33, 7152–7161 (2018). https://doi.org/10.1109/TPWRS.2018.2847400

    Article  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge funding by the German Federal Ministry of Education and Research (BMBF) within the Kopernikus Project ENSURE ‘New ENergy grid StructURes for the German Energiewende’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Poppenborg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Poppenborg, R., Khalloof, H., Chlosta, M., Hofferberth, T., Düpmeier, C., Hagenmeyer, V. (2022). Dynamic Optimization of Energy Hubs with Evolutionary Algorithms Using Adaptive Time Segments and Varying Resolution. In: Yin, H., Camacho, D., Tino, P. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2022. IDEAL 2022. Lecture Notes in Computer Science, vol 13756. Springer, Cham. https://doi.org/10.1007/978-3-031-21753-1_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21753-1_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21752-4

  • Online ISBN: 978-3-031-21753-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics