[go: up one dir, main page]

Skip to main content

Towards an Interpretable Model for Automatic Classification of Endoscopy Images

  • Conference paper
  • First Online:
Advances in Computational Intelligence (MICAI 2022)

Abstract

Deep learning strategies have become the mainstream for computer-assisted diagnosis tools development since they outperform other machine learning techniques. However, these systems can not reach their full potential since the lack of understanding of their operation and questionable generalizability provokes mistrust from the users, limiting their application. In this paper, we generate a Convolutional Neural Network (CNN) using a genetic algorithm for hyperparameter optimization. Our CNN has state-of-the-art classification performance, delivering higher evaluation metrics than other recent papers that use AI models to classify images from the same dataset. We provide visual explanations of the classifications made by our model implementing Grad-CAM and analyze the behavior of our model on misclassifications using this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alagappan, M., Brown, J., Mori, Y., Berzin, T.: Artificial intelligence in gastrointestinal endoscopy: the future is almost here. World J. Gastrointest. Endosc. 10, 239–249 (2018). https://doi.org/10.4253/wjge.v10.i10.239

  2. Alzubaidi, L., et al.: Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J. Big Data 8(1), 53 (2021). https://doi.org/10.1186/s40537-021-00444-8, https://journalofbigdata.springeropen.com/articles/10.1186/s40537-021-00444-8

  3. Berzin, T., Parasa, S., Wallace, M., Gross, S., Repici, A., Sharma, P.: Position statement on priorities for artificial intelligence in gi endoscopy: a report by the asge task force. Gastrointest. Endosc. 92 (2020). https://doi.org/10.1016/j.gie.2020.06.035

  4. Chahal, D., Byrne, M.: A primer on artificial intelligence and its application to endoscopy. Gastrointest. Endosc. 92 (2020). https://doi.org/10.1016/j.gie.2020.04.074

  5. Fujita, H.: AI-based computer-aided diagnosis (AI-CAD): the latest review to read first. Radiol. Phys. Technol. 13(1), 6–19 (2020). https://doi.org/10.1007/s12194-019-00552-4

  6. García-Aguirre, R., et al.: Automatic generation of optimized convolutional neural networks for medical image classification using a genetic algorithm (2022). https://doi.org/10.2139/ssrn.4167905

  7. Gross, S., Sharma, P., Pante, A.: Artificial intelligence in endoscopy. Gastrointest. Endosc. 91 (2019). https://doi.org/10.1016/j.gie.2019.12.018

  8. Hicks, S., et al.: Dissecting deep neural networks for better medical image classification and classification understanding. In: 2018 IEEE 31st International Symposium on Computer-Based Medical Systems (CBMS), pp. 363–368 (2018). https://doi.org/10.1109/CBMS.2018.00070

  9. Jha, D., et al.: A comprehensive analysis of classification methods in gastrointestinal endoscopy imaging. Med. Image Anal. 70, 102007 (2021)

    Google Scholar 

  10. Kochhar, G.S., Carleton, N.M., Thakkar, S.: Assessing perspectives on artificial intelligence applications to gastroenterology. Gastrointest. Endosc. 93(4), 971–975.e2 (2021). https://doi.org/10.1016/j.gie.2020.10.029

  11. Lafraxo, S., El Ansari, M.: Gastronet: abnormalities recognition in gastrointestinal tract through endoscopic imagery using deep learning techniques. In: 2020 8th International Conference on Wireless Networks and Mobile Communications (WINCOM), pp. 1–5 (2020). https://doi.org/10.1109/WINCOM50532.2020.9272456

  12. Lipton, Z.C.: The mythos of model interpretability (2016). https://arxiv.org/abs/1606.03490. https://doi.org/10.48550/ARXIV.1606.03490

  13. Luo, H., et al.: Real-time artificial intelligence for detection of upper gastrointestinal cancer by endoscopy: a multicentre, case-control, diagnostic study. Lancet Oncol. 20 (2019). https://doi.org/10.1016/S1470-2045(19)30637-0

  14. Maddox, T., Rumsfeld, J., Payne, P.: Questions for artificial intelligence in health care. JAMA 321 (2018). https://doi.org/10.1001/jama.2018.18932

  15. Miotto, R., Wang, F., Wang, S., Jiang, X., Dudley, J.T.: Deep learning for healthcare: review, opportunities and challenges. Brief. Bioinf. 19(6), 1236–1246 (2018)

    Article  Google Scholar 

  16. Mori, Y., et al.: Artificial intelligence and upper gastrointestinal endoscopy: current status and future perspective. Digest. Endosc. 31 (2018). https://doi.org/10.1111/den.13317

  17. Öztürk, S., Özkaya, U.: Gastrointestinal tract classification using improved LSTM based CNN. Multimedia Tools Appl. 79(39–40), 28825–28840 (2020). https://doi.org/10.1007/s11042-020-09468-3

    Article  Google Scholar 

  18. Pogorelov, K., et al.: Kvasir: a multi-class image dataset for computer aided gastrointestinal disease detection. In: Proceedings of the 8th ACM on Multimedia Systems Conference, MMSys 2017, pp. 164–169. ACM, New York (2017). https://doi.org/10.1145/3083187.3083212

  19. Prevedello, L., et al.: Challenges related to artificial intelligence research in medical imaging and the importance of image analysis competitions. Radiol. Artif. Intell. 1, e180031 (2019). https://doi.org/10.1148/ryai.2019180031

  20. Quinn, T.P., Jacobs, S., Senadeera, M., Le, V., Coghlan, S.: The three ghosts of medical ai: can the black-box present deliver? Artif. Intell. Med., 102158 (2021). https://doi.org/10.1016/j.artmed.2021.102158. https://www.sciencedirect.com/science/article/pii/S0933365721001512

  21. Reyes, M., et al.: On the interpretability of artificial intelligence in radiology: challenges and opportunities. Radiol. Artif. Intell. 2, e190043 (2020). https://doi.org/10.1148/ryai.2020190043

  22. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. Int. J. Comput. Vision 128(2), 336–359 (2019). https://doi.org/10.1007/s11263-019-01228-7

  23. Shin, Y., Balasingham, I.: Automatic polyp frame screening using patch based combined feature and dictionary learning. Comput. Med. Imaging Graph. 69, 33–42 (2018). https://doi.org/10.1016/j.compmedimag.2018.08.001

  24. Stead, W.W.: Clinical implications and challenges of artificial intelligence and deep learning. JAMA 320(11), 1107–1108 (2018)

    Article  Google Scholar 

  25. Thambawita, V., et al.: An extensive study on cross-dataset bias and evaluation metrics interpretation for machine learning applied to gastrointestinal tract abnormality classification. ACM Trans. Comput. Healthcare 1(3) (2020). https://doi.org/10.1145/3386295

  26. van der Velden, B.H., Kuijf, H.J., Gilhuijs, K.G., Viergever, M.A.: Explainable artificial intelligence (XAI) in deep learning-based medical image analysis. Med. Image Anal. 79, 102470 (2022). https://doi.org/10.1016/j.media.2022.102470

  27. Yao, A., Cheng, D., Pan, I., Kitamura, F.: Deep learning in neuroradiology: a systematic review of current algorithms and approaches for the new wave of imaging technology. Radiol. Artif. Intell. 2, e190026 (2020). https://doi.org/10.1148/ryai.2020190026

  28. Yasuda, T., et al.: Potential of automatic diagnosis system with linked color imaging for diagnosis of Helicobacter pylori infection. Digest. Endosc. 32(3), 373–381 (2020). https://doi.org/10.1111/den.13509

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rogelio García-Aguirre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

García-Aguirre, R., Torres-Treviño, L., Navarro-López, E.M., González-González, J.A. (2022). Towards an Interpretable Model for Automatic Classification of Endoscopy Images. In: Pichardo Lagunas, O., Martínez-Miranda, J., Martínez Seis, B. (eds) Advances in Computational Intelligence. MICAI 2022. Lecture Notes in Computer Science(), vol 13612. Springer, Cham. https://doi.org/10.1007/978-3-031-19493-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19493-1_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19492-4

  • Online ISBN: 978-3-031-19493-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics