[go: up one dir, main page]

Skip to main content

Persuasive Dialogue Corpus: Graph-Based Approach Combining Persuader and Persuadee Perspectives

  • Conference paper
  • First Online:
Proceedings of the Future Technologies Conference (FTC) 2022, Volume 3 (FTC 2022 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 561))

Included in the following conference series:

  • 769 Accesses

Abstract

Persuasion is omnipresent in our daily communication. As a mechanism for changing or forming one’s opinion or behavior, persuasive dialogues and their strategies have gained interest for developing intelligent conversational systems. Given the complexity of this task, persuasion systems, especially dealing in conversations that require ‘no action’ by the user but rather a change in opinion or belief, require specialized annotated corpora and the understanding of logical structure, natural language, and persuasive strategies. The sparsity of available annotated data and a wide range of proposed models make it challenging for developing strategic chatbots specific to user needs. To address these issues, this study introduces a novel framework combining a replicable data collection tool and a topic-independent annotation schema for designing an argument-graph corpus and incorporating both persuader and persuadee perspectives, essential for building smart conversational agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/MeghnaAllamudi/Neo4JDatabaseDev.

  2. 2.

    https://github.com/MeghnaAllamudi/Thesis-Data-Collection.

  3. 3.

    https://github.com/MeghnaAllamudi/Neo4JDatabaseDev.

References

  1. Benner, D., Schöbel, S., Janson, A.: Exploring the state-of-the-art of persuasive design for smart personal assistants. In: International Conference on Wirtschaftsinformatik (WI) (2021)

    Google Scholar 

  2. Boella, G., Hulstijn, J., Van Der Torre, L.: Persuasion strategies in dialogue. In: The ECAI Workshop on Computational Models of Natural Argument (CMNA 2004) (2004)

    Google Scholar 

  3. Chalaguine, L.A., Hunter, A.: Chatbot design for argument harvesting. Front. Artif. Intell. Appl. 305, 457–458 (2018)

    Google Scholar 

  4. Chalaguine, L.A., Hunter, A.: Knowledge acquisition and corpus for argumentation-based chatbots. In: Proceedings of the 3rd Workshop on Advances in Argumentation in Artificial Intelligence, pp. 1–14 (2019)

    Google Scholar 

  5. Chalaguine, L.A., Hunter, A., Potts, H.W.W., Hamilton, F.L.: Impact of argument type and concerns in argumentation with a chatbot. In: IEEE 31st International Conference on Tools with Artificial Intelligence, pp. 1557–1562 (2019)

    Google Scholar 

  6. Chen, H., Ghosal, D., Majumder, N., Hussain, A., Poria, S.: Persuasive dialogue understanding: the baselines and negative results. Neurocomputing 431, 47–56 (2021)

    Article  Google Scholar 

  7. Duerr, S., Gloor, P.A.: Persuasive natural language generation - a literature review (2018), 1–17 (2021)

    Google Scholar 

  8. Huang, K.-Y., Huang, H.-H., Chen, H.-H.: HARGAN: heterogeneous argument attention network for persuasiveness prediction. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 14, pp. 13045–13054 (2021)

    Google Scholar 

  9. Hunter, A.: Towards a framework for computational persuasion with applications in behaviour change. Argument Comput. 9(1), 15–40 (2018)

    Article  Google Scholar 

  10. Kacprzak, M.: Persuasive strategies in dialogue games with emotional reasoning. In: Polkowski, L., et al. (eds.) IJCRS 2017. LNCS (LNAI), vol. 10314, pp. 435–453. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60840-2_32

    Chapter  Google Scholar 

  11. Lipa-Urbina, E., Condori-Fernandez, N., Suni-Lopez, F.: Towards an automatic generation of persuasive messages. In: Ali, R., Lugrin, B., Charles, F. (eds.) PERSUASIVE 2021. LNCS, vol. 12684, pp. 55–62. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79460-6_5

    Chapter  Google Scholar 

  12. Oduor, M., Alahaivala, T., Oinas-Kukkonen, H.: Software design patterns for persuasive computer-human dialogue: reminder, reward, and instant feedback. In: Little, L., Sillence, E., Joinson, A. (eds.) Behavior Change Research and Theory: Psychological and Technological Perspectives, pp. 47–67. Elsevier Science (2017)

    Google Scholar 

  13. Sakai, K., Higashinaka, R., Yoshikawa, Y., Ishiguro, H., Tomita, J.: Hierarchical argumentation structure for persuasive argumentative dialogue generation. IEICE Trans. Inf. Syst. E103D(2), 424–434 (2020)

    Article  Google Scholar 

  14. Wang, X., et al.: Persuasion for good: towards a personalized persuasive dialogue system for social good. In: ACL 2019 - 57th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference, pp. 5635–5649 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Scrivner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Allamudi, M., Scrivner, O. (2023). Persuasive Dialogue Corpus: Graph-Based Approach Combining Persuader and Persuadee Perspectives. In: Arai, K. (eds) Proceedings of the Future Technologies Conference (FTC) 2022, Volume 3. FTC 2022 2022. Lecture Notes in Networks and Systems, vol 561. Springer, Cham. https://doi.org/10.1007/978-3-031-18344-7_43

Download citation

Publish with us

Policies and ethics