Abstract
Persuasion is omnipresent in our daily communication. As a mechanism for changing or forming one’s opinion or behavior, persuasive dialogues and their strategies have gained interest for developing intelligent conversational systems. Given the complexity of this task, persuasion systems, especially dealing in conversations that require ‘no action’ by the user but rather a change in opinion or belief, require specialized annotated corpora and the understanding of logical structure, natural language, and persuasive strategies. The sparsity of available annotated data and a wide range of proposed models make it challenging for developing strategic chatbots specific to user needs. To address these issues, this study introduces a novel framework combining a replicable data collection tool and a topic-independent annotation schema for designing an argument-graph corpus and incorporating both persuader and persuadee perspectives, essential for building smart conversational agents.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Benner, D., Schöbel, S., Janson, A.: Exploring the state-of-the-art of persuasive design for smart personal assistants. In: International Conference on Wirtschaftsinformatik (WI) (2021)
Boella, G., Hulstijn, J., Van Der Torre, L.: Persuasion strategies in dialogue. In: The ECAI Workshop on Computational Models of Natural Argument (CMNA 2004) (2004)
Chalaguine, L.A., Hunter, A.: Chatbot design for argument harvesting. Front. Artif. Intell. Appl. 305, 457–458 (2018)
Chalaguine, L.A., Hunter, A.: Knowledge acquisition and corpus for argumentation-based chatbots. In: Proceedings of the 3rd Workshop on Advances in Argumentation in Artificial Intelligence, pp. 1–14 (2019)
Chalaguine, L.A., Hunter, A., Potts, H.W.W., Hamilton, F.L.: Impact of argument type and concerns in argumentation with a chatbot. In: IEEE 31st International Conference on Tools with Artificial Intelligence, pp. 1557–1562 (2019)
Chen, H., Ghosal, D., Majumder, N., Hussain, A., Poria, S.: Persuasive dialogue understanding: the baselines and negative results. Neurocomputing 431, 47–56 (2021)
Duerr, S., Gloor, P.A.: Persuasive natural language generation - a literature review (2018), 1–17 (2021)
Huang, K.-Y., Huang, H.-H., Chen, H.-H.: HARGAN: heterogeneous argument attention network for persuasiveness prediction. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 14, pp. 13045–13054 (2021)
Hunter, A.: Towards a framework for computational persuasion with applications in behaviour change. Argument Comput. 9(1), 15–40 (2018)
Kacprzak, M.: Persuasive strategies in dialogue games with emotional reasoning. In: Polkowski, L., et al. (eds.) IJCRS 2017. LNCS (LNAI), vol. 10314, pp. 435–453. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60840-2_32
Lipa-Urbina, E., Condori-Fernandez, N., Suni-Lopez, F.: Towards an automatic generation of persuasive messages. In: Ali, R., Lugrin, B., Charles, F. (eds.) PERSUASIVE 2021. LNCS, vol. 12684, pp. 55–62. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79460-6_5
Oduor, M., Alahaivala, T., Oinas-Kukkonen, H.: Software design patterns for persuasive computer-human dialogue: reminder, reward, and instant feedback. In: Little, L., Sillence, E., Joinson, A. (eds.) Behavior Change Research and Theory: Psychological and Technological Perspectives, pp. 47–67. Elsevier Science (2017)
Sakai, K., Higashinaka, R., Yoshikawa, Y., Ishiguro, H., Tomita, J.: Hierarchical argumentation structure for persuasive argumentative dialogue generation. IEICE Trans. Inf. Syst. E103D(2), 424–434 (2020)
Wang, X., et al.: Persuasion for good: towards a personalized persuasive dialogue system for social good. In: ACL 2019 - 57th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference, pp. 5635–5649 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Allamudi, M., Scrivner, O. (2023). Persuasive Dialogue Corpus: Graph-Based Approach Combining Persuader and Persuadee Perspectives. In: Arai, K. (eds) Proceedings of the Future Technologies Conference (FTC) 2022, Volume 3. FTC 2022 2022. Lecture Notes in Networks and Systems, vol 561. Springer, Cham. https://doi.org/10.1007/978-3-031-18344-7_43
Download citation
DOI: https://doi.org/10.1007/978-3-031-18344-7_43
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-18343-0
Online ISBN: 978-3-031-18344-7
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)