[go: up one dir, main page]

Skip to main content

Localized Vision-Language Matching for Open-vocabulary Object Detection

  • Conference paper
  • First Online:
Pattern Recognition (DAGM GCPR 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13485))

Included in the following conference series:

  • 2085 Accesses

Abstract

In this work, we propose an open-vocabulary object detection method that, based on image-caption pairs, learns to detect novel object classes along with a given set of known classes. It is a two-stage training approach that first uses a location-guided image-caption matching technique to learn class labels for both novel and known classes in a weakly-supervised manner and second specializes the model for the object detection task using known class annotations. We show that a simple language model fits better than a large contextualized language model for detecting novel objects. Moreover, we introduce a consistency-regularization technique to better exploit image-caption pair information. Our method compares favorably to existing open-vocabulary detection approaches while being data-efficient. Source code is available at https://github.com/lmb-freiburg/locov.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amrani, E., Ben-Ari, R., Shapira, I., Hakim, T., Bronstein, A.: Self-supervised object detection and retrieval using unlabeled videos. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 954–955 (2020)

    Google Scholar 

  2. Bansal, A., Sikka, K., Sharma, G., Chellappa, R., Divakaran, A.: Zero-shot object detection. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 384–400 (2018)

    Google Scholar 

  3. Bertasius, G., Torresani, L.: Cobe: contextualized object embeddings from narrated instructional video. Adv. Neural Inf. Process. Syst. 33, 15133–15145 (2020)

    Google Scholar 

  4. Bilen, H., Vedaldi, A.: Weakly supervised deep detection networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2846–2854 (2016)

    Google Scholar 

  5. Chen, X., et al.: Microsoft coco captions: data collection and evaluation server. arXiv preprint arXiv:1504.00325 (2015)

  6. Chen, Y.-C., Li, L., Yu, L., El Kholy, A., Ahmed, F., Gan, Z., Cheng, Yu., Liu, J.: UNITER: uNiversal image-TExt representation learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12375, pp. 104–120. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58577-8_7

    Chapter  Google Scholar 

  7. Chen, Z., Ma, L., Luo, W., Wong, K.Y.K.: Weakly-supervised spatio-temporally grounding natural sentence in video. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (2019)

    Google Scholar 

  8. Cinbis, R.G., Verbeek, J., Schmid, C.: Weakly supervised object localization with multi-fold multiple instance learning. IEEE Trans. Pattern Anal. Mach. Intell. 39(1), 189–203 (2017)

    Google Scholar 

  9. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)

    Google Scholar 

  10. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  11. Dong, J., Li, X., Xu, C., Ji, S., He, Y., Yang, G., Wang, X.: Dual encoding for zero-example video retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9346–9355 (2019)

    Google Scholar 

  12. Ging, S., Zolfaghari, M., Pirsiavash, H., Brox, T.: Coot: cooperative hierarchical transformer for video-text representation learning. Adv. Neural Inf. Process. Syst. (NeurIPS), textbf33, 22605–22618 (2020)

    Google Scholar 

  13. Gu, X., Lin, T.Y., Kuo, W., Cui, Y.: Open-vocabulary object detection via vision and language knowledge distillation. Int. Conf. Learn. Representations (2022). https://openreview.net/forum?id=lL3lnMbR4WU

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  15. Huang, Z., Zeng, Z., Liu, B., Fu, D., Fu, J.: Pixel-bert: Aligning image pixels with text by deep multi-modal transformers. arXiv preprint arXiv:2004.00849 (2020)

  16. Huynh, D., Kuen, J., Lin, Z., Gu, J., Elhamifar, E.: Open-vocabulary instance segmentation via robust cross-modal pseudo-labeling. arXiv preprint arXiv:2111.12698 (2021)

  17. Jeong, J., Lee, S., Kim, J., Kwak, N.: Consistency-based semi-supervised learning for object detection. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  18. Kim, D., Lin, T.Y., Angelova, A., Kweon, I.S., Kuo, W.: Learning open-world object proposals without learning to classify. IEEE Robot. Autom. Lett. 7(2), 5453–5460 (2022)

    Article  Google Scholar 

  19. Klein, B., Lev, G., Sadeh, G., Wolf, L.: Associating neural word embeddings with deep image representations using fisher vectors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4437–4446 (2015)

    Google Scholar 

  20. Kosugi, S., Yamasaki, T., Aizawa, K.: Object-aware instance labeling for weakly supervised object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6064–6072 (2019)

    Google Scholar 

  21. Li, X., et al.: Oscar: object-semantics aligned pre-training for vision-language tasks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12375, pp. 121–137. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58577-8_8

    Chapter  Google Scholar 

  22. Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  23. Liu, Y.C., et al.: Unbiased teacher for semi-supervised object detection. In: International Conference on Learning Representations (2021)

    Google Scholar 

  24. Lu, J., Batra, D., Parikh, D., Lee, S.: Vilbert: pretraining task-agnostic visiolinguistic representations for vision-and-language tasks. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  25. Miech, A., Alayrac, J.B., Laptev, I., Sivic, J., Zisserman, A.: Thinking fast and slow: efficient text-to-visual retrieval with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9826–9836 (2021)

    Google Scholar 

  26. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)

    Google Scholar 

  27. Pham, K., Kafle, K., Lin, Z., Ding, Z., Cohen, S., Tran, Q., Shrivastava, A.: Learning to predict visual attributes in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13018–13028 (2021)

    Google Scholar 

  28. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)

    Google Scholar 

  29. Rahman, S., Khan, S., Barnes, N.: Improved visual-semantic alignment for zero-shot object detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 07, pp. 11932–11939 (2020)

    Google Scholar 

  30. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 28 (2015)

    Google Scholar 

  31. Ren, Z., et al.: Instance-aware, context-focused, and memory-efficient weakly supervised object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10598–10607 (2020)

    Google Scholar 

  32. Sadhu, A., Chen, K., Nevatia, R.: Video object grounding using semantic roles in language description. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10417–10427 (2020)

    Google Scholar 

  33. Sohn, K., Zhang, Z., Li, C., Zhang, H., Lee, C., Pfister, T.: A simple semi-supervised learning framework for object detection. arXiv preprint arXiv:2005.04757 (2020)

  34. Su, W., Zhu, X., Cao, Y., Li, B., Lu, L., Wei, F., Dai, J.: Vl-bert: pre-training of generic visual-linguistic representations. In: International Conference on Learning Representations (2019)

    Google Scholar 

  35. Tan, H., Bansal, M.: Lxmert: learning cross-modality encoder representations from transformers. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) (2019)

    Google Scholar 

  36. Wang, L., Li, Y., Huang, J., Lazebnik, S.: Learning two-branch neural networks for image-text matching tasks. IEEE Trans. Pattern Anal. Mach. Intell. 41(2), 394–407(2018)

    Google Scholar 

  37. Wolf, T., et al.: Transformers: state-of-the-art natural language processing. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp. 38–45 (2020)

    Google Scholar 

  38. Wu, Y., Kirillov, A., Massa, F., Lo, W.Y., Girshick, R.: Detectron2. https://github.com/facebookresearch/detectron2 (2019)

  39. Zareian, A., Rosa, K.D., Hu, D.H., Chang, S.F.: Open-vocabulary object detection using captions. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14393–14402 (2021)

    Google Scholar 

  40. Zhang, P., Li, X., Hu, X., Yang, J., Zhang, L., Wang, L., Choi, Y., Gao, J.: Vinvl: revisiting visual representations in vision-language models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5579–5588 (2021)

    Google Scholar 

  41. Zhang, Z., Zhao, Z., Zhao, Y., Wang, Q., Liu, H., Gao, L.: Where does it exist: spatio-temporal video grounding for multi-form sentences. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10668–10677 (2020)

    Google Scholar 

  42. Zhong, Y., et al.: Regionclip: Region-based language-image pretraining. arXiv preprint arXiv:2112.09106 (2021)

  43. Zhou, L., Palangi, H., Zhang, L., Hu, H., Corso, J., Gao, J.: Unified vision-language pre-training for image captioning and VQA. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 07, pp. 13041–13049 (2020)

    Google Scholar 

  44. Zhu, P., Wang, H., Saligrama, V.: Don’t even look once: synthesizing features for zero-shot detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11693–11702 (2020)

    Google Scholar 

Download references

Acknowledgement

This work was supported by Deutscher Akademischer Austauschdienst - German Academic Exchange Service (DAAD) Research Grants - Doctoral Programmes in Germany, 2019/20; grant number: 57440921.

The Deep Learning Cluster used in this work is partially funded by the German Research Foundation (DFG) - 417962828.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MarĂ­a A. Bravo .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 14290 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bravo, M.A., Mittal, S., Brox, T. (2022). Localized Vision-Language Matching for Open-vocabulary Object Detection. In: Andres, B., Bernard, F., Cremers, D., Frintrop, S., GoldlĂ¼cke, B., Ihrke, I. (eds) Pattern Recognition. DAGM GCPR 2022. Lecture Notes in Computer Science, vol 13485. Springer, Cham. https://doi.org/10.1007/978-3-031-16788-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16788-1_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16787-4

  • Online ISBN: 978-3-031-16788-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics