[go: up one dir, main page]

Skip to main content

Regression Metric Loss: Learning a Semantic Representation Space for Medical Images

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13438))

Abstract

Regression plays an essential role in many medical imaging applications for estimating various clinical risk or measurement scores. While training strategies and loss functions have been studied for the deep neural networks in medical image classification tasks, options for regression tasks are very limited. One of the key challenges is that the high-dimensional feature representation learned by existing popular loss functions like Mean Squared Error or L1 loss is hard to interpret. In this paper, we propose a novel Regression Metric Loss (RM-Loss), which endows the representation space with the semantic meaning of the label space by finding a representation manifold that is isometric to the label space. Experiments on two regression tasks, i.e. coronary artery calcium score estimation and bone age assessment, show that RM-Loss is superior to the existing popular regression losses on both performance and interpretability. Code is available at https://github.com/DIAL-RPI/Regression-Metric-Loss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The derivation of this lemma is provided in the Supplementary Material.

  2. 2.

    The algorithm proposed for efficient NN radius optimization for model selection is described in Supplementary Material.

  3. 3.

    Agatston score: minimal: 1–10, mild: 11–100, moderate: 101–400, severe: >400.

  4. 4.

    Details of using partial dataset are described in Sect. 3.4.

References

  1. Agatston, A.S., Janowitz, W.R., Hildner, F.J., Zusmer, N.R., Viamonte, M., Detrano, R.: Quantification of coronary artery calcium using ultrafast computed tomography. J. Am. Coll. Cardiol. 15(4), 827–832 (1990)

    Article  Google Scholar 

  2. Choi, H., Som, A., Turaga, P.: AMC-Loss: angular margin contrastive loss for improved explainability in image classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 838–839 (2020)

    Google Scholar 

  3. Dai, W., Li, X., Chiu, W.H.K., Kuo, M.D., Cheng, K.T.: Adaptive contrast for image regression in computer-aided disease assessment. IEEE Trans. Med. Imaging 41, 1255–1268 (2021)

    Article  Google Scholar 

  4. Gilsanz, V., Ratib, O.: Hand Bone Age: A Digital Atlas of Skeletal Maturity. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-642-23762-1

    Book  Google Scholar 

  5. Halabi, S.S., et al.: The RSNA pediatric bone age machine learning challenge. Radiology 290(2), 498–503 (2019)

    Article  Google Scholar 

  6. Hara, K., Kataoka, H., Satoh, Y.: Learning spatio-temporal features with 3D residual networks for action recognition. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 3154–3160 (2017)

    Google Scholar 

  7. Hermans, A., Beyer, L., Leibe, B.: In defense of the triplet loss for person re-identification. arXiv preprint arXiv:1703.07737 (2017)

  8. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  9. Liu, L., Dou, Q., Chen, H., Qin, J., Heng, P.A.: Multi-task deep model with margin ranking loss for lung nodule analysis. IEEE Trans. Med. Imaging 39(3), 718–728 (2019)

    Article  Google Scholar 

  10. National Lung Screening Trial Research Team, et al: Reduced lung-cancer mortality with low-dose computed tomographic screening. New Engl. J. Med. 365(5), 395–409 (2011). https://doi.org/10.1056/NEJMoa1102873

  11. Oprita, B., Aignatoaie, B., Gabor-Postole, D.: Scores and scales used in emergency medicine. practicability in toxicology. J. Med. Life 7(Spec Iss 3), 4 (2014)

    Google Scholar 

  12. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  13. Sohn, K.: Improved deep metric learning with multi-class n-pair loss objective. In: Advances in Neural Information Processing Systems 29 (2016)

    Google Scholar 

  14. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  15. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  16. Ye, M., Shen, J., Zhang, X., Yuen, P.C., Chang, S.F.: Augmentation invariant and instance spreading feature for softmax embedding. IEEE Trans. Pattern Anal. Mach. Intell. 44(2), 924–939 (2020). https://doi.org/10.1109/TPAMI.2020.3013379

  17. Zhang, Y., Choi, M., Han, K., Liu, Z.: Explainable semantic space by grounding language to vision with cross-modal contrastive learning. In: Advances in Neural Information Processing Systems 34 (2021)

    Google Scholar 

  18. Zheng, K., et al.: Semi-supervised learning for bone mineral density estimation in hip X-ray images. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 33–42. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_4

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was partly supported by National Heart, Lung, and Blood Institute (NHLBI) of the National Institutes of Health (NIH) under award R56HL145172.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pingkun Yan .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 607 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chao, H., Zhang, J., Yan, P. (2022). Regression Metric Loss: Learning a Semantic Representation Space for Medical Images. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13438. Springer, Cham. https://doi.org/10.1007/978-3-031-16452-1_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16452-1_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16451-4

  • Online ISBN: 978-3-031-16452-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics