[go: up one dir, main page]

Skip to main content

What Logical Model Is Suitable for Relational Trajectory Data Warehouses?

Application to Agricultural Autonomous Robots

  • Conference paper
  • First Online:
Database and Expert Systems Applications (DEXA 2022)

Abstract

The ability to query vast amount of historical data for statistical analysis and reporting is provided by Data Warehouses. They facilitate Business Intelligence for effective decision-making significantly. In recent years, great progress has been made in movement monitoring devices, such as smart phones and GPSs. The storing and managing of spatio-temporal data related to the trajectories of moving objects in a data warehouse is called Trajectory Data Warehouse (TDW). The relational approach is adopted widely for the logical representation of TDWs, since it is based on the classic database approach where data representation and processing are handled on structured data. In this paper, the key idea is to consider different logical relational TDW models, i.e. flat, segment and complex, which are compared and evaluated. The study is based on a novel classification of OLAP queries, the cardinality of facts and the resolution of each trajectory in segments. Real data provided by agricultural autonomous robots is used, where experiments on size and time performances are conducted and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Due to pages limit, this figure is presented in the Appendix.

  2. 2.

    Due to pages limit, this Table is presented in the Appendix.

  3. 3.

    Due to pages limit, this Table is presented in the Appendix.

References

  1. Ribeiro de Almeida, D., de Souza Baptista, C., Gomes de Andrade, F., Soares, A.: A survey on big data for trajectory analytics. ISPRS Int. J. Geo-Information 9(2), 88 (2020)

    Google Scholar 

  2. Alsahfi, T., Almotairi, M., Elmasri, R.: A survey on trajectory data warehouse. Spat. Inf. Res. 28(1), 53–66 (2020)

    Google Scholar 

  3. Andersen, O., Krogh, B.B., Thomsen, C., Torp, K.: An advanced data warehouse for integrating large sets of GPS data. In: Int. Workshop on Data Warehousing and OLAP (DOLAP), pp. 13–22. ACM (2014)

    Google Scholar 

  4. Arfaoui, N., Akaichi, J.: Modeling herd trajectory data warehouse. Int. J. Eng. Trends Technol. 6, 1–9 (2011)

    Google Scholar 

  5. Braz, F., Orlando, S., Orsini, R., Raffaeta, A., Roncato, A., Silvestri, C.: Approximate aggregations in trajectory data warehouses. In: International Conference on Data Engineering (ICDE) Workshop, pp. 536–545. IEEE (2007)

    Google Scholar 

  6. Campora, S., de Macedo, J.A.F., Spinsanti, L.: St-toolkit: a framework for trajectory data warehousing. In: AGILE Conference on Geographic Information Science (2011)

    Google Scholar 

  7. Düntgen, C., Behr, T., Güting, R.H.: Berlinmod: a benchmark for moving object databases. VLDB J. 18(6), 1335–1368 (2009)

    Google Scholar 

  8. Garani, G., Adam, G.K.: A semantic trajectory data warehouse for improving nursing productivity. Health Inf. Sci. Syst. 8(1), 25 (2020). https://doi.org/10.1007/s13755-020-00117-5, https://doi.org/10.1007/s13755-020-00117-5

  9. Kimball, R., Ross, M.: The data warehouse toolkit: the complete guide to dimensional modeling, 2nd edn. Wiley (2002)

    Google Scholar 

  10. Leonardi, L., et al.: T-warehouse: Visual olap analysis on trajectory data. In: International Conference on Data Engineering (ICDE), pp. 1141–1144. IEEE (2010)

    Google Scholar 

  11. Leonardi, L., Orlando, S., Raffaetà, A., Roncato, A., Silvestri, C., Andrienko, G., Andrienko, N.: A general framework for trajectory data warehousing and visual OLAP. GeoInformatica 18(2), 273–312 (2013). https://doi.org/10.1007/s10707-013-0181-3

    Article  Google Scholar 

  12. Malinowski, E., Zimányi, E.: Spatial hierarchies and topological relationships in the spatial MultiDimER model. In: Jackson, M., Nelson, D., Stirk, S. (eds.) BNCOD 2005. LNCS, vol. 3567, pp. 17–28. Springer, Heidelberg (2005). https://doi.org/10.1007/11511854_2

    Chapter  Google Scholar 

  13. Manaa, M., Akaichi, J.: Ontology-based trajectory data warehouse conceptual model. In: Madria, S., Hara, T. (eds.) DaWaK 2016. LNCS, vol. 9829, pp. 329–342. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43946-4_22

    Chapter  Google Scholar 

  14. Marketos, G., Theodoridis, Y.: Ad-hoc olap on trajectory data. In: International Conference on Mobile Data Management, pp. 189–198. IEEE (2010)

    Google Scholar 

  15. Nambiar, R.O., Poess, M.: The making of tpc-ds. VLDB 6, 1049–1058 (2006)

    Google Scholar 

  16. Oueslati, W., Akaichi, J.: Mobile information collectors trajectory data warehouse design. Int. J. Manag. Inf. Technol. (IJMIT) 2 (2010)

    Google Scholar 

  17. Oueslati, W., Hamdi, H., Akaichi, J.: A mobile hospital trajectory data warehouse modeling and querying to detect the breast cancer disease. In: International Conference on Intelligent Information Processing, Security and Advanced Communication (IPAC), pp. 93:1–93:5. ACM (2015)

    Google Scholar 

  18. Porto, F., et al.: A metaphoric trajectory data warehouse for olympic athlete follow-up. Concurrency Comput. Pract. Exp. 24(13), 1497–1512 (2012)

    Google Scholar 

  19. Wagner, R., de Macedo, J.A.F., Raffaetà, A., Renso, C., Roncato, A., Trasarti, R.: Mob-warehouse: a semantic approach for mobility analysis with a trajectory data warehouse. In: Parsons, J., Chiu, D. (eds.) ER 2013. LNCS, vol. 8697, pp. 127–136. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-14139-8_15

    Chapter  Google Scholar 

  20. Tang, B., Shen, G., Zhang, C.: Data warehousing of vehicle trajectory. In: Int. Conf. on Software Engineering and Service Science (ICSESS), pp. 935–938 (2015)

    Google Scholar 

  21. Vaisman, A., Zimányi, E.: Mobility data warehouses. ISPRS Int. J. Geo-Information 8(4), 170 (2019)

    Google Scholar 

Download references

Acknowledgement

This work is supported by the French National Research Agency project IDEX-ISITE initiative 16-IDEX-0001 (CAP 20-25).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandro Bimonte .

Editor information

Editors and Affiliations

7 Appendix

7 Appendix

Table 3. Time performance of queries according to number of trajectories; Traj.Distr. - Trajectory Distributive, Traj.Alg. - Trajectory Algebraic, Trj.Hol. - Trajectory Holistic, Pt.Distr. - Point Distributive, Pt.Alg. - Point Algebraic, Pt.Hol. - Point Holistic, ITraj.Dist. - Inter-Trajectories Distributive, ITraj.Alg. - Inter-Trajectories Algebraic, ITraj.Hol. - Inter-Trajectories Holistic
Table 4. Time queries performance according to resolution of trajectories
Fig. 6.
figure 6

Logical multidimensional examples: a) flat, b) complex, c) segment

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oikonomou, K., Garani, G., Bimonte, S., Wrembel, R. (2022). What Logical Model Is Suitable for Relational Trajectory Data Warehouses?. In: Strauss, C., Cuzzocrea, A., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Database and Expert Systems Applications. DEXA 2022. Lecture Notes in Computer Science, vol 13426. Springer, Cham. https://doi.org/10.1007/978-3-031-12423-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-12423-5_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-12422-8

  • Online ISBN: 978-3-031-12423-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics