Abstract
The ability to query vast amount of historical data for statistical analysis and reporting is provided by Data Warehouses. They facilitate Business Intelligence for effective decision-making significantly. In recent years, great progress has been made in movement monitoring devices, such as smart phones and GPSs. The storing and managing of spatio-temporal data related to the trajectories of moving objects in a data warehouse is called Trajectory Data Warehouse (TDW). The relational approach is adopted widely for the logical representation of TDWs, since it is based on the classic database approach where data representation and processing are handled on structured data. In this paper, the key idea is to consider different logical relational TDW models, i.e. flat, segment and complex, which are compared and evaluated. The study is based on a novel classification of OLAP queries, the cardinality of facts and the resolution of each trajectory in segments. Real data provided by agricultural autonomous robots is used, where experiments on size and time performances are conducted and discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Due to pages limit, this figure is presented in the Appendix.
- 2.
Due to pages limit, this Table is presented in the Appendix.
- 3.
Due to pages limit, this Table is presented in the Appendix.
References
Ribeiro de Almeida, D., de Souza Baptista, C., Gomes de Andrade, F., Soares, A.: A survey on big data for trajectory analytics. ISPRS Int. J. Geo-Information 9(2), 88 (2020)
Alsahfi, T., Almotairi, M., Elmasri, R.: A survey on trajectory data warehouse. Spat. Inf. Res. 28(1), 53–66 (2020)
Andersen, O., Krogh, B.B., Thomsen, C., Torp, K.: An advanced data warehouse for integrating large sets of GPS data. In: Int. Workshop on Data Warehousing and OLAP (DOLAP), pp. 13–22. ACM (2014)
Arfaoui, N., Akaichi, J.: Modeling herd trajectory data warehouse. Int. J. Eng. Trends Technol. 6, 1–9 (2011)
Braz, F., Orlando, S., Orsini, R., Raffaeta, A., Roncato, A., Silvestri, C.: Approximate aggregations in trajectory data warehouses. In: International Conference on Data Engineering (ICDE) Workshop, pp. 536–545. IEEE (2007)
Campora, S., de Macedo, J.A.F., Spinsanti, L.: St-toolkit: a framework for trajectory data warehousing. In: AGILE Conference on Geographic Information Science (2011)
Düntgen, C., Behr, T., Güting, R.H.: Berlinmod: a benchmark for moving object databases. VLDB J. 18(6), 1335–1368 (2009)
Garani, G., Adam, G.K.: A semantic trajectory data warehouse for improving nursing productivity. Health Inf. Sci. Syst. 8(1), 25 (2020). https://doi.org/10.1007/s13755-020-00117-5, https://doi.org/10.1007/s13755-020-00117-5
Kimball, R., Ross, M.: The data warehouse toolkit: the complete guide to dimensional modeling, 2nd edn. Wiley (2002)
Leonardi, L., et al.: T-warehouse: Visual olap analysis on trajectory data. In: International Conference on Data Engineering (ICDE), pp. 1141–1144. IEEE (2010)
Leonardi, L., Orlando, S., Raffaetà, A., Roncato, A., Silvestri, C., Andrienko, G., Andrienko, N.: A general framework for trajectory data warehousing and visual OLAP. GeoInformatica 18(2), 273–312 (2013). https://doi.org/10.1007/s10707-013-0181-3
Malinowski, E., Zimányi, E.: Spatial hierarchies and topological relationships in the spatial MultiDimER model. In: Jackson, M., Nelson, D., Stirk, S. (eds.) BNCOD 2005. LNCS, vol. 3567, pp. 17–28. Springer, Heidelberg (2005). https://doi.org/10.1007/11511854_2
Manaa, M., Akaichi, J.: Ontology-based trajectory data warehouse conceptual model. In: Madria, S., Hara, T. (eds.) DaWaK 2016. LNCS, vol. 9829, pp. 329–342. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43946-4_22
Marketos, G., Theodoridis, Y.: Ad-hoc olap on trajectory data. In: International Conference on Mobile Data Management, pp. 189–198. IEEE (2010)
Nambiar, R.O., Poess, M.: The making of tpc-ds. VLDB 6, 1049–1058 (2006)
Oueslati, W., Akaichi, J.: Mobile information collectors trajectory data warehouse design. Int. J. Manag. Inf. Technol. (IJMIT) 2 (2010)
Oueslati, W., Hamdi, H., Akaichi, J.: A mobile hospital trajectory data warehouse modeling and querying to detect the breast cancer disease. In: International Conference on Intelligent Information Processing, Security and Advanced Communication (IPAC), pp. 93:1–93:5. ACM (2015)
Porto, F., et al.: A metaphoric trajectory data warehouse for olympic athlete follow-up. Concurrency Comput. Pract. Exp. 24(13), 1497–1512 (2012)
Wagner, R., de Macedo, J.A.F., Raffaetà, A., Renso, C., Roncato, A., Trasarti, R.: Mob-warehouse: a semantic approach for mobility analysis with a trajectory data warehouse. In: Parsons, J., Chiu, D. (eds.) ER 2013. LNCS, vol. 8697, pp. 127–136. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-14139-8_15
Tang, B., Shen, G., Zhang, C.: Data warehousing of vehicle trajectory. In: Int. Conf. on Software Engineering and Service Science (ICSESS), pp. 935–938 (2015)
Vaisman, A., Zimányi, E.: Mobility data warehouses. ISPRS Int. J. Geo-Information 8(4), 170 (2019)
Acknowledgement
This work is supported by the French National Research Agency project IDEX-ISITE initiative 16-IDEX-0001 (CAP 20-25).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
7 Appendix
7 Appendix
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Oikonomou, K., Garani, G., Bimonte, S., Wrembel, R. (2022). What Logical Model Is Suitable for Relational Trajectory Data Warehouses?. In: Strauss, C., Cuzzocrea, A., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Database and Expert Systems Applications. DEXA 2022. Lecture Notes in Computer Science, vol 13426. Springer, Cham. https://doi.org/10.1007/978-3-031-12423-5_30
Download citation
DOI: https://doi.org/10.1007/978-3-031-12423-5_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-12422-8
Online ISBN: 978-3-031-12423-5
eBook Packages: Computer ScienceComputer Science (R0)