[go: up one dir, main page]

Skip to main content

ZLeaks: Passive Inference Attacks on Zigbee Based Smart Homes

  • Conference paper
  • First Online:
Applied Cryptography and Network Security (ACNS 2022)

Abstract

Zigbee is an energy-efficient wireless IoT protocol that is increasingly being deployed in smart home settings. In this work, we analyze the privacy guarantees of Zigbee protocol. Specifically, we present ZLeaks, a tool that passively identifies in-home devices or events from the encrypted Zigbee traffic by 1) inferring a single application layer (APL) command in the event’s traffic, and 2) exploiting the device’s periodic reporting pattern and interval. This enables an attacker to infer user’s habits or determine if the smart home is vulnerable to unauthorized entry. We evaluated ZLeaks’ efficacy on 19 unique Zigbee devices across several categories and 5 popular smart hubs in three different scenarios; controlled RF shield, living smart-home IoT lab, and third-party Zigbee captures. We were able to i) identify unknown events and devices (without a-priori device signatures) using command inference approach with 83.6% accuracy, ii) automatically extract device’s reporting signatures, iii) determine known devices using the reporting signatures with 99.8% accuracy, and iv) identify APL commands in a public capture with 91.2% accuracy. In short, we highlight the trade-off between designing a low-power, low-cost wireless network and achieving privacy guarantees. We have also released ZLeaks tool for the benefit of the research community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Zigbee Devices not previously observed, i.e., no a-priori access to their traffic.

  2. 2.

    Range can be extended with a high gain directional antenna.

References

  1. Marchal, S., Miettinen, M., Nguyen, T.D., Sadeghi, A.-R., Asokan, N.: AuDI: toward autonomous IoT device-type identification using periodic communication. IEEE J. Sel. Areas Commun. 37(6), 1402–1412 (2019). https://doi.org/10.1109/JSAC.2019.2904364

    Article  Google Scholar 

  2. Meidan, Y., et al.: ProfilIoT: a machine learning approach for iot device identification based on network traffic analysis. In: Proceedings of the Symposium on Applied Computing, Morocco, pp. 506–509. ACM (2017)

    Google Scholar 

  3. Miettinen, M., Marchal, S., Hafeez, I., Asokan, N., Sadeghi, A.R., Tarkoma, S.: IoT sentinel: automated device-type identification for security enforcement in IoT. In: 37th International Conference on Distributed Computing Systems, USA, pp. 2177–2184. IEEE (2017)

    Google Scholar 

  4. Pierre Marie Junges, J.F., Festor, O.: Passive inference of user actions through IoT gateway encrypted traffic analysis. In: IEEE Symposium on Integrated Network and Service Management, USA. IEEE (2019)

    Google Scholar 

  5. Trimananda, R., Varmarken, J., Markopoulou, A., Demsky, B.: Packet-level signatures for smart home devices. In: Network and Distributed System Security Symposium, NDSS, USA, vol. 10, no. 13, p. 54 (2020)

    Google Scholar 

  6. Copos, B., Levitt, K., Bishop, M., Rowe, J.: Is anybody home? Inferring activity from smart home network traffic. In: IEEE Security and Privacy Workshops (SPW), USA, pp. 245–251. IEEE (2016)

    Google Scholar 

  7. Acar, A., et al.: Peek-a-Boo: i see your smart home activities, even encrypted! In: 13th ACM Conference on Security and Privacy in Wireless and Mobile Networks, Austria, WiSec 2020. ACM (2020)

    Google Scholar 

  8. Zhang, W., Meng, Y., Liu, Y., Zhang, X., Zhang, Y., Zhu, H.: HoMonit: monitoring smart home apps from encrypted traffic. In: Proceedings of the SIGSAC Conference on Computer and Communications Security, Canada, pp. 1074–1088. ACM (2018)

    Google Scholar 

  9. Akestoridis, D.G., Harishankar, M., Weber, M., Tague, P.: Zigator: analyzing the security of zigbee-enabled smart homes. In: 13th ACM Conference on Security and Privacy in Wireless and Mobile Networks, Austria, WiSec 2020. ACM (2020)

    Google Scholar 

  10. Zigbee Alliance: ZigBee Specification, 05-3474-21 (2015)

    Google Scholar 

  11. Zigbee Alliance: 2020 and Beyond. https://zigbeealliance.org/news_and_articles/zigbee-momentum/. Accessed June 2021

  12. Zigbee Alliance: Zigbee Cluster Library Specification, 07-5123-06 (2016)

    Google Scholar 

  13. Smart Home Enthusiast’s Guide to ZigBee (2019). https://linkdhome.com/articles/what-is-zigbee-guide. Accessed June 2021

  14. ZLeaks. https://github.com/narmeenshafqat1/ZLeaks

  15. Mon(IoT)r Lab. https://moniotrlab.ccis.neu.edu/. Accessed June 2021

  16. Wireshark bug. https://bugs.wireshark.org/bugzilla/show_bug.cgi?id=9423

  17. Zigator CRAWDAD dataset CMU. (v. 2020-05-26). https://crawdad.org/cmu/zigbee-smarthome/20200526. Accessed May 2021

  18. TI CC2531 zigbee. https://www.ti.com/product/CC2531. Accessed June 2021

  19. Zigbee Compliance Document of Lightify bulb (2014). https://zigbeealliance.org/zigbee_products/lightify-classic-a60-rgbw/. Accessed June 2021

  20. Zigbee Compliance Document of Sengled Bulb (2018). https://zigbeealliance.org/zigbee_products/sengled-element-3/. Accessed July 2021

  21. Tshark captures. https://tshark.dev/search/pcaptable/. Accessed May 2021

  22. Pyshark. https://github.com/KimiNewt/pyshark. Accessed June 2021

  23. US-CERT: CVE. http://cve.mitre.org/. Accessed May 2021

  24. Ronen, E., Shamir, A., Weingarten, A.O., OFlynn, C.: IoT goes nuclear: creating a ZigBee chain reaction. In: IEEE Symposium on Security and Privacy, USA (2017)

    Google Scholar 

  25. Herwig, S., Harvey, K., Hughey, G., Roberts, R., Levin, D.: Measurement and analysis of Hajime, a peer-to-peer IoT botnet. In: Network and Distributed Systems Security Symposium (NDSS), USA (2019)

    Google Scholar 

  26. Sugawara, T., Cyr, B., Rampazzi, S., Genkin, D., Fu, K.: Light commands: laser-based audio injection attacks on voice-controllable systems. In: 29th USENIX Security Symposium, USA, pp. 2631–2648. USENIX (2020)

    Google Scholar 

  27. Sun, Q., Simon, D.R., Wang, Y.M., Russell, W., Padmanabhan, V.N., Qiu, L.: Statistical identification of encrypted web browsing traffic. In: IEEE Symposium on Security and Privacy, USA, pp. 19–30. IEEE (2002)

    Google Scholar 

  28. Leu, P., Puddu, I., Ranganathan, A., Čapkun, S.: I send, therefore i leak: information leakage in low-power wide area networks. In: Proceedings of 11th ACM Conference on Security & Privacy in Wireless and Mobile Networks, Sweden (2018)

    Google Scholar 

  29. Liu, X., Zeng, Q., Du, X., Valluru, S.L., Fu, C., Fu, X.: SniffMislead: non-intrusive privacy protection against wireless packet sniffers in smart homes. In: 24th International Symposium on Research in Attacks, Intrusions and Defenses (2021)

    Google Scholar 

  30. Matter. https://buildwithmatter.com/. Accessed May 2021

  31. Anantharaman, P., et al.: IoTHound: environment-agnostic device identification and monitoring. In: 10th International Conference on Internet of Things. ACM (2020)

    Google Scholar 

  32. Thangavelu, V., Divakaran, D.M., Sairam, R., Bhunia, S.S., Gurusamy, M.: DEFT: a distributed IoT fingerprinting technique. IEEE Internet Things J. 6(1), 940–952 (2019)

    Article  Google Scholar 

  33. Cho, K.T., Shin, K.G.: Fingerprinting electronic control units for vehicle intrusion detection. In: USENIX Security Symposium, USA, pp. 911–927 (2016)

    Google Scholar 

  34. Salman, O., Elhajj, I.H., Chehab, A., Kayssi, A.: A machine learning based framework for IoT device identification and abnormal traffic detection. Trans. Emerg. Telecommun. Technol. 33, e3743 (2019)

    Google Scholar 

  35. Earlence Fernandes, J.J., Prakash, A.: Security analysis of emerging smart home applications. In: 37th IEEE Symposium on Security and Privacy, USA (2016)

    Google Scholar 

  36. Perdisci, R., Papastergiou, T., Alrawi, O., Antonakakis, M.: IoTFinder: efficient large-scale identification of IoT devices via passive DNS traffic analysis. In: European Symposium on Security and Privacy (EuroS&P), virtual, pp. 474–489. IEEE (2020)

    Google Scholar 

  37. Babun, L., Aksu, H., Ryan, L., Akkaya, K., Bentley, E.S., Uluagac, A.S.: Z-IoT: passive device-class fingerprinting of ZigBee and Z-Wave IoI devices. In: IEEE International Conference on Communications (ICC), Ireland, pp. 1–7. IEEE (2020)

    Google Scholar 

  38. Gu, T., Fang, Z., Abhishek, A., Fu, H., Hu, P., Mohapatra, P.: IoTGaze: IoT security enforcement via wireless context analysis. In: IEEE Conference on Computer Communications (INFOCOM), virtual, pp. 884–893. IEEE (2020)

    Google Scholar 

  39. Gu, T., Fang, Z., Abhishek, A., Mohapatra, P.: IoTSpy: uncovering human privacy leakage in IoT networks via mining wireless context. In: IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications, virtual, pp. 1–7. IEEE (2020)

    Google Scholar 

  40. Brown, F., Gleason, M.: ZigBee hacking: smarter home invasion with ZigDiggity. In: Black Hat, USA (2019)

    Google Scholar 

  41. Olawumi, O., Haataja, K., Asikainen, M., Vidgren, N., Toivanen, P.: Three practical attacks against ZigBee security: attack scenario definitions, practical experiments, countermeasures, and lessons learned. In: 14th International Conference on Hybrid Intelligent Systems, Kuwait, pp. 199–206. IEEE (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narmeen Shafqat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shafqat, N., Dubois, D.J., Choffnes, D., Schulman, A., Bharadia, D., Ranganathan, A. (2022). ZLeaks: Passive Inference Attacks on Zigbee Based Smart Homes. In: Ateniese, G., Venturi, D. (eds) Applied Cryptography and Network Security. ACNS 2022. Lecture Notes in Computer Science, vol 13269. Springer, Cham. https://doi.org/10.1007/978-3-031-09234-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09234-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09233-6

  • Online ISBN: 978-3-031-09234-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics