Abstract
We investigate whether objective features, like occurrence of an error and number of turns, can automatically predict success in interactions with multimodal speech assistants. We used interactions from the SmartKom corpus, a data set on multimodal interactions with virtual assistants in German. In a first step, we segmented the interactions into requests and labeled them as successful or unsuccessful. Afterwards, we defined task success as the average of request success rate. Next, we investigated whether subjective features such as emotions expressed by users show a relation to task success. We find no significant correlation. Finally, we exploited objective features, e.g., number of turns to predict request success. We find that objective features suffice to reach \(F_1\) scores over 0.9 (prediction of successful requests) and \(F_0\) scores above 0.83 (prediction of unsuccessful requests). Finally, we discuss implications of our findings for automatic evaluation of pragmatic aspects of user experience.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Tractica. Anzahl der Nutzer virtueller digitaler Assistenten weltweit in den Jahren von 2015 bis 2021 (in Millionen). Statista (2016)
Porter, J., Pino, N., Leger, H.: Amazon Echo vs Apple HomePod vs Google Home: the battle of the smart speakers (2019). https://www.techradar.com/news/amazon-echo-vs-homepod-vs-google-home-the-battle-of-the-smart-speakers. Accessed 29 Nov 2021
Gebhart, A., Price, M.: The best smart speakers for 2019 (2019). https://www.cnet.com/news/best-smart-speakers-for-2019-amazon-echo-dot-google-nest-mini-assistant-alexa/. Accessed 29 Nov 2021
Van Camp, J.: The 8 best smart speakers with Alexa and Google Assistant (2019). https://www.wired.com/story/best-smart-speakers/. Accessed 29 Nov 2021
Hassenzahl, M.: The hedonic/pragmatic model of user experience. Towards a UX manifesto (2007)
Minge, M., Thüring, M.: Hedonic and pragmatic halo effects at early stages of user experience. Int. J. Hum.-Comput. Stud. 109, 13–25 (2018). ISSN 1071–5819. https://doi.org/10.1016/j.ijhcs.2017.07.007
Merčun, T., Žumer, M.: Exploring the influences on pragmatic and hedonic aspects of user experience. Inf. Res. 22(1) (2017)
Gao, J., Galley, M., Li, L.: Neural approaches to conversational AI. In: The 41st International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2018, pp. 1371–1374. Association for Computing Machinery, New York (2018). ISBN 9781450356572, https://doi.org/10.1145/3209978.3210183
Brüggemeier, B., Breiter, M., Kurz, M., Schiwy, J.: User experience of alexa, siri and google assistant when controlling music – comparison of four questionnaires. In: Stephanidis, C., Marcus, A., Rosenzweig, E., Rau, P.-L.P., Moallem, A., Rauterberg, M. (eds.) HCII 2020. LNCS, vol. 12423, pp. 600–618. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60114-0_40
Kurz, M., Brüggemeier, B., Breiter, M.: Success is not final; failure is not fatal – task success and user experience in interactions with alexa, google assistant and siri. In: Kurosu, M. (ed.) HCII 2021. LNCS, vol. 12764, pp. 351–369. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78468-3_24
Lewis, J., Sauro, J.: Can i leave this one out? the effect of dropping an item from the sus. J. Usabil. Stud. 13(1), 38–46 (2017)
Kocabalil, A., Laranjo, L., Coiera, E.: Measuring user experience in conversational interfaces: a comparison of six questionnaires. In: Proceedings of the 32nd International BCS Human Computer Interaction Conference, vol. 32, pp. 1–12 (2018)
Deriu, J., Rodrigo, A., Otegi, A., Echegoyen, G., Rosset, S., Agirre, E., Cieliebak, M.: Survey on evaluation methods for dialogue systems. Artif. Intell. Rev. 54(1), 755–810 (2020). https://doi.org/10.1007/s10462-020-09866-x
McLafferty, S.: Conducting questionnaire surveys. Key Methods Geogr. 1, 87–100 (2003)
Fedotov, D., Matsuda, Y., Minker, W.: From smart to personal environment: Integrating emotion recognition into smart houses. In: IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), pp. 943–948 (2019). https://doi.org/10.1109/PERCOMW.2019.8730876
Shamekhi, A., Czerwinski, M., Mark, G., Novotny, M., Bennett, G.A.: An exploratory study toward the preferred conversational style for compatible virtual agents. In: Traum, D., Swartout, W., Khooshabeh, P., Kopp, S., Scherer, S., Leuski, A. (eds.) IVA 2016. LNCS (LNAI), vol. 10011, pp. 40–50. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47665-0_4
Cassell, J., Thórisson, K.: The power of a nod and a glance: envelope vs. emotional feedback in animated conversational agents. Appl. Artif. Intell. 13, 519–538 (1999). https://doi.org/10.1080/088395199117360
Hamacher, A., Bianchi-Berthouze, N., Pipe, A.G., Eder, K.: Believing in bert: using expressive communication to enhance trust and counteract operational error in physical human-robot interaction. In: 25th IEEE International Symposium on Robot and Human Interactive Communication, pp. 493–500 (2016)
Bickmore, T., Cassell, J.: Social Dialongue with Embodied Conversational Agents, pp. 23–54. Springer, Dordrecht (2005). https://doi.org/10.1007/1-4020-3933-6_2
Schuller, B., et al.: Cross-corpus acoustic emotion recognition: variances and strategies. IEEE Trans. Affect. Comput. 1(2), 119–131 (2010)
Lim, N.: Cultural differences in emotion: differences in emotional arousal level between the east and the west. Integr. Med. Res. 5(2), 105–109 (2016)
Schiel, F.: Evaluation of Multimodal Dialogue Systems, pp. 617–643. Springer, Heidelberg (2006)
Hassenzahl, M., Platz, A., Burmester, M., Lehner, K.: Hedonic and ergonomic quality aspect determine a software’s appeal. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 201–208 (2000)
Wahlster, W. (ed.): SmartKom: Foundations of Multimodal Dialogue Systems. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-36678-4
Beringer, N.: SmartKom - Datensammlung und Evaluation. Technical Report Memo Nr. 2, Ludwig-Maximilians-Universität München (2000). https://www.phonetik.uni-muenchen.de/Forschung/SmartKom/Memo-NR-02.ps
Kleinbaum, D.G., Klein, M.: Logistic Regression. SBH, Springer, New York (2010). https://doi.org/10.1007/978-1-4419-1742-3
Bishop, C.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). ISSN 1573–0565, https://doi.org/10.1023/A:1010933404324
Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996). https://doi.org/10.1007/bf00058655
Louppe, G.: Understanding Random Forests: From Theory to Practice. PhD thesis, University of Liège (2014)
Breiman, L., Friedman, J.H., Olshen, R., Stone, C.J.: Classification and Regression Trees. Wadsworth International Group (1984)
Schapire, R., Freund, Y., Bartlett, P., Lee, W.: Boosting the margin: a new explanation for the effectiveness of voting methods. Ann. Statist. 26(5), 1651–1686 (1998). https://doi.org/10.1214/aos/1024691352
Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. In: Vitányi, P. (ed.) EuroCOLT 1995. LNCS, vol. 904, pp. 23–37. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59119-2_166
Ng, A.Y., Jordan, M.I.: On discriminative vs. generative classifiers: a comparison of logistic regression and naive bayes. Adv. Neural Inf. Process. Syst. 14, 841–848 (2002)
Zhang, H.: The optimality of naive bayes. Assoc. Adv. Artif. Intell. 1(2), 3 (2004)
Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995). ISSN 1573–0565, https://doi.org/10.1007/BF00994018
scikit learn. scikit-learn user guide. https://scikit-learn.org/stable/user_guide.html. Accessed 12 Dec 2021
Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
King, G., Zeng, L.: Logistic regression in rare events data. Polit. Anal. 9(2), 137–163 (2001). https://doi.org/10.1093/oxfordjournals.pan.a004868
Liu, M., Xu, C., Luo, Y., Xu, C., Wen, Y., Tao, D.: Cost-sensitive feature selection by optimizing f-measures. IEEE Trans. Image Process. 27(3), 1323–1335 (2018). ISSN 1941–0042, https://doi.org/10.1109/TIP.2017.2781298
Parambath, S., Usunier, N., Grandvalet, Y.: Optimizing f-measures by cost-sensitive classification. Adv. Neural Inf. Process. Syst. 27, 2123–2131 (2014). http://papers.nips.cc/paper/5508-optimizing-f-measures-by-cost-sensitive-classification.pdf
Steininger, S., Schiel, F., Rabold, S.: Annotation of multimodal data. In: SmartKom: Foundations of Multimodal Dialogue Systems, pp. 571–596 (2006)
Budkov, V., Prischepa, M., Ronzhin, A., Karpov, A.: Multimodal human-robot interaction. In: International Congress on Ultra Modern Telecommunications and Control Systems, pp. 485–488. IEEE (2010). https://doi.org/10.1109/ICUMT.2010.5676593
Kuncheva, L.: Combining Pattern Classifiers: Methods and Algorithms. John Wiley & Sons, Hoboken (2014)
Shi, W., Yu, Z.: Sentiment adaptive end-to-end dialog systems (2019)
McDuff, D., Czerwinski, M.: Designing emotionally sentient agents. Commun. ACM 61(12), 74–83 (2018). https://doi.org/10.1145/3186591
Acknowledgments
Our work is partially funded by the German Federal Ministry for Economic Affairs and Energy as part of their AI innovation initiative (funding code01MK20011A).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Weber, M., Halimeh, M.M., Kellermann, W., Popp, B. (2022). Predicting Request Success with Objective Features in German Multimodal Speech Assistants. In: Degen, H., Ntoa, S. (eds) Artificial Intelligence in HCI. HCII 2022. Lecture Notes in Computer Science(), vol 13336. Springer, Cham. https://doi.org/10.1007/978-3-031-05643-7_39
Download citation
DOI: https://doi.org/10.1007/978-3-031-05643-7_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-05642-0
Online ISBN: 978-3-031-05643-7
eBook Packages: Computer ScienceComputer Science (R0)