Abstract
The attention mechanism is one of the most popular deep learning techniques in recent years and it is arguably able to produce human-interpretable results. In this research, we developed a classification model combining two self-attention modules and a convolutional neural network. This model achieved benchmark or superior performance on two electroencephalography (EEG) recording datasets. Moreover, we demonstrated that the self-attention modules were able to capture features, including average voltage of signal features and instant voltage change of the EEG signals, by visualizing the attention maps they produced.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate (2014). http://arxiv.org/abs/1409.0473, cite arxiv:1409.0473Comment. Accepted at ICLR 2015 as oral presentation
Bang, J.S., Lee, S.W.: Interpretable convolutional neural networks for subject-independent motor imagery classification (2021)
Blankertz, B., et al.: The BCI competition. III: validating alternative approaches to actual BCI problems. IEEE Trans. Neural Syst. Rehabil. Eng. 14(2), 153–159 (2006). https://doi.org/10.1109/TNSRE.2006.875642
Chaudhari, S., Mithal, V., Polatkan, G., Ramanath, R.: An attentive survey of attention models (2021)
Chen, K., Wang, J., Chen, L.C., Gao, H., Xu, W., Nevatia, R.: ABC-CNN: an attention based convolutional neural network for visual question answering, November 2015
Cheng, J., Dong, L., Lapata, M.: Long short-term memory-networks for machine reading (2016)
Cisotto, G., Zanga, A., Chlebus, J., Zoppis, I., Manzoni, S., Markowska-Kaczmar, U.: Comparison of attention-based deep learning models for EEG classification (2020)
Cordonnier, J.B., Loukas, A., Jaggi, M.: On the relationship between self-attention and convolutional layers (2020)
Craik, A., He, Y., Contreras-Vidal, J.L.: Deep learning for electroencephalogram (EEG) classification tasks: a review. J. Neural Eng. 16(3), 031001 (2019)
Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale (2021)
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015)
Lee, Y.E., Lee, S.H.: EEG-transformer: self-attention from transformer architecture for decoding EEG of imagined speech (2021)
Liu, X., Shen, Y., Liu, J., Yang, J., Xiong, P., Lin, F.: Parallel spatial-temporal self-attention CNN-based motor imagery classification for BCI. Front. Neurosci. 14 (2020). https://doi.org/10.3389/fnins.2020.587520. https://www.frontiersin.org/article/10.3389/fnins.2020.587520
Lotte, F., et al.: A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update. J. Neural Eng. 15(3), 031005 (2018)
Lotte, F., Lécuyer, A., Guan, C.: Towards a Fully Interpretable EEG-based BCI System, July 2010. https://hal.inria.fr/inria-00504658. Working paper or preprint
Luong, M.T., Pham, H., Manning, C.D.: Effective approaches to attention-based neural machine translation (2015)
Qu, X., Hall, M., Sun, Y., Sekuler, R., Hickey, T.J.: A personalized reading coach using wearable EEG sensors-a pilot study of brainwave learning analytics, pp. 501–507 (2018)
Qu, X., Liu, P., Li, Z., Hickey, T.: Multi-class time continuity voting for EEG classification. In: Frasson, C., Bamidis, P., Vlamos, P. (eds.) BFAL 2020. LNCS (LNAI), vol. 12462, pp. 24–33. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60735-7_3
Qu, X., Mei, Q., Liu, P., Hickey, T.: Using EEG to distinguish between writing and typing for the same cognitive task. In: Frasson, C., Bamidis, P., Vlamos, P. (eds.) BFAL 2020. LNCS (LNAI), vol. 12462, pp. 66–74. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60735-7_7
Qu, X., Sun, Y., Sekuler, R., Hickey, T.: EEG markers of stem learning, pp. 1–9 (2018). https://doi.org/10.1109/FIE.2018.8659031
Schreyer, H.M., Gollisch, T.: Nonlinear spatial integration in retinal bipolar cells shapes the encoding of artificial and natural stimuli. Neuron 109(10), 1692–1706 (2021). https://doi.org/10.1016/j.neuron.2021.03.015
Smith, S.J.M.: EEG in the diagnosis, classification, and management of patients with epilepsy. J. Neurol. Neurosurg. Psychiatry 76(suppl 2), ii2–ii7 (2005). https://doi.org/10.1136/jnnp.2005.069245. https://jnnp.bmj.com/content/76/suppl_2/ii2
Sturm, I., Bach, S., Samek, W., Müller, K.R.: Interpretable deep neural networks for single-trial EEG classification (2016)
Sun, J., Xie, J., Zhou, H.: EEG classification with transformer-based models. In: 2021 IEEE 3rd Global Conference on Life Sciences and Technologies (2021)
Vaswani, A., et al.: Attention is all you need 30 (2017). https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
Wairagkar, M., Hayashi, Y., Nasuto, S.J.: Dynamics of long-range temporal correlations in broadband EEG during different motor execution and imagery tasks. Front. Neurosci. 15 (2021). https://doi.org/10.3389/fnins.2021.660032. https://www.frontiersin.org/article/10.3389/fnins.2021.660032
Willett, F.R., Avansino, D.T., Hochberg, L.R., Henderson, J.M., Shenoy, K.V.: High-performance brain-to-text communication via imagined handwriting. Nature 593, 249–254 (2021)
Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1
Yin, W., Schütze, H., Xiang, B., Zhou, B.: ABCNN: attention-based convolutional neural network for modeling sentence pairs (2018)
Zhang, X., Yao, L., Wang, X., Monaghan, J., McAlpine, D., Zhang, Y.: A survey on deep learning-based non- invasive brain signals: recent advances and new frontiers. J. Neural Eng. 18, 031002 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Yi, L., Qu, X. (2022). Attention-Based CNN Capturing EEG Recording’s Average Voltage and Local Change. In: Degen, H., Ntoa, S. (eds) Artificial Intelligence in HCI. HCII 2022. Lecture Notes in Computer Science(), vol 13336. Springer, Cham. https://doi.org/10.1007/978-3-031-05643-7_29
Download citation
DOI: https://doi.org/10.1007/978-3-031-05643-7_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-05642-0
Online ISBN: 978-3-031-05643-7
eBook Packages: Computer ScienceComputer Science (R0)