[go: up one dir, main page]

Skip to main content

History, Techniques and Technologies of Soil-Less Cultivation

  • Chapter
  • First Online:
Small Scale Soil-less Urban Agriculture in Europe

Part of the book series: Urban Agriculture ((URBA))

Abstract

This chapter outlines the historical trajectories, the technologies, and the techniques of three types of soil-less cultivation: hydroponics, aquaponics, and mushroom farming. This brief overview is necessary to frame historically, conceptually and policy-wise this sector and the motivations underpinning urban agriculture projects and enterprises that use these technologies. The historical sections provide an account of the factors that led to the development of hydroponics, aquaponics and mushroom farming. This constitutes a useful resource since an indepth historical investigation on soil-less cultivation has not yet been written. Tracing the origins of soil-less growing and the development of aspects such as effective growing media is both informative and necessary to contextualise these technologies within the history of food production. The historical sections are followed by a brief technical overview of the options and system components for each technology, with a particular focus on simplified soil-less systems, which have been largely promoted by organisations such as FAO to improve food security in developing countries. These systems are particularly appropriate for implementing the low-cost, self-build units operating in some of the case studies presented in the book. Finally, productivity, environmental efficiency, relevant policies, and market context complete the picture for each of the three soil-less

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://zipgrow.com/

  2. 2.

    https://practicalaction.org/knowledge-centre/resources/floating-gardens/

  3. 3.

    https://www.welthungerhilfe.org/our-work/countries/bangladesh/floating-gardens/

  4. 4.

    www.wholeearth.com

  5. 5.

    http://www.backyardaquaponics.com/

  6. 6.

    https://www.friendlyaquaponics.com/backyard-aquaponics-systems/

  7. 7.

    www.euaquaponicshub.com

References

Websites

  • Arnon, D. I., & Hoagland, D. R. (1944). The investigation of plant nutrition by artificial culture methods. Biological Reviews, 19(2), 55–67.

    Article  CAS  Google Scholar 

  • Atkinson, N. (2018). Hydroponics: Should we think small? CPQ Nutrition, 1(3), 1–17.

    Google Scholar 

  • Aulie, R. P. (1970). Boussingault and the nitrogen cycle. Proceedings of the American Philosophical Society, 114(6), 435–479.

    CAS  Google Scholar 

  • Bailey, D. S., & Ferrarezi, R. S. (2017). Valuation of vegetable crops produced in the UVI commercial Aquaponic system. Aquaculture Reports, 7, 77–82.

    Article  Google Scholar 

  • Barbosa, G. L., Gadelha, F. D. A., Kublik, N., Proctor, A., Reichelm, L., Weissinger, E., Wohlleb, G. M., & Halden, R. U. (2015). Comparison of land, water, and energy requirements of lettuce grown using hydroponic vs. conventional agricultural methods. International Journal of Environmental Research and Public Health, 12(6), 6879–6891.

    Article  PubMed  Google Scholar 

  • Barrett, G. E., Alexander, P. D., Robinson, J. S., & Bragg, N. C. (2016). Achieving environmentally sustainable growing media for soilless plant cultivation systems–a review. Scientia Horticulturae, 212, 220–234.

    Article  Google Scholar 

  • Beebe, J. K., Amshoff, Y., Ho-Lastimosa, I., Moayedi, G., Bradley, A. L., Kim, I. N., Casson, N., Protzman, R., Espiritu, D., Spencer, M. S., & Chung-Do, J. J. (2020). Reconnecting rural native Hawaiian families to food through aquaponics. Genealogy, 4(1), 9.

    Article  Google Scholar 

  • Bell, E., Etzel, R., Hammer, B., Frey, L., Harmon, T., Blank, T., Meeusen, C., Burn, B., Schon, M., Huang, Y., & Petitt, F. (2004). Food crop culture in the land greenhouses at EPCOT®. In VII International symposium on protected cultivation in mild winter climates: production, pest management and global competition 659 (pp. 161–169).

    Google Scholar 

  • Boneta, A., Rufí-Salís, M., Ercilla-Montserrat, M., Gabarrell, X., & Rieradevall, J. (2019). Agronomic and environmental assessment of a polyculture rooftop soilless urban home garden in a Mediterranean city. Frontiers in Plant Science, 10, 341.

    Article  PubMed  PubMed Central  Google Scholar 

  • Campos-Vega, R., Loarca-Pina, G., Vergara-Castaneda, H. A., & Oomah, B. D. (2015). Spent coffee grounds: A review on current research and future prospects. Trends in Food Science & Technology, 45(1), 24–36.

    Article  CAS  Google Scholar 

  • Carson, R. (2000:1962). Silent spring. Penguin.

    Google Scholar 

  • Chang, S. T. (1977). The origin and early development of straw mushroom cultivation. Economic Botany, 31(3), 374–376.

    Google Scholar 

  • Chang, S. T. (2009). Training manual on mushroom cultivation technology. United Nations-Asian And Pacific Centre For Agricultural Engineering And Machinery (UN-APCAEM).

    Google Scholar 

  • Crossley, P. L. (2004). Sub-irrigation in wetland agriculture. Agriculture and Human Values, 21(2/3), 191–205.

    Article  Google Scholar 

  • Cunha Zied, D., Sánchez, J. E., Noble, R., & Pardo-Giménez, A. (2020). Use of spent mushroom substrate in new mushroom crops to promote the transition towards a circular economy. Agronomy, 10(9), 1239.

    Article  CAS  Google Scholar 

  • Datta, S. (2015). Aquaponics: Its present status and potential. Fishing Chimes, 34(11), 44–48.

    Google Scholar 

  • Di Lorenzo, R., Pisciotta, A., Santamaria, P., & Scariot, V. (2013). From soil to soil-less in horticulture: Quality and typicity. Italian Journal of Agronomy, 8(4), 30.

    Article  Google Scholar 

  • Di Marco, P., Petochi, T., Marino, G., Priori, A., Finoia, M. G., Tomassetti, P., Porrello, S., Giorgi, G., Lupi, P., Bonelli, A., & Parisi, G. (2017). Insights into organic farming of European sea bass Dicentrarchus labrax and gilthead sea bream Sparus aurata through the assessment of environmental impact, growth performance, fish welfare and product quality. Aquaculture, 471, 92–105.

    Article  Google Scholar 

  • Diver, S. (2006) Aquaponics – Integration of hydroponics with aquaculture. ATTRA—National Sustainable Agriculture Information Service. Available at https://attra.ncat.org/attra-pub/download.php?id=56. Downloaded 07-08-2019.

  • Dorr, E., Koegler, M., Gabrielle, B., & Aubry, C. (2020). Life cycle assessment of a circular, urban mushroom farm. Journal of Cleaner Production, 125668.

    Google Scholar 

  • Easin, M. N., Ahmed, R., Alam, M. S., Reza, M. S., & Ahmed, K. U. (2017). Mushroom cultivation as a small-scale family enterprise for the alternative income generation in rural Bangladesh. International Journal of Agriculture, Forestry and Fisheries, 5(1), 1–8.

    Google Scholar 

  • Espinal, C. A., & Matulić, D. (2019). Recirculating aquaculture technologies. In Aquaponics food production systems (pp. 35–76). Springer.

    Chapter  Google Scholar 

  • FAO. (1957). Fish culture in rice fields. In A preliminary review and annotated bibliography from Section II and III of Proc. Indo-Pacif. Fish. Coun. 7. FAO, Rome, pp. 193–206

    Google Scholar 

  • FAO. (2014). Growing Greener cities in Latin America and the Caribbean: An FAO report on Urban and Peri-urban agriculture in the Region. Food & Agriculture Org.

    Google Scholar 

  • FAO. (2015). Deep Water culture aquaponic unit: step by step description.

    Google Scholar 

  • FAO. (2017). Indoor oyster mushroom cultivation for livelihood diversification and increased resilience in Uganda. Available at http://www.fao.org/3/CA2568EN/ca2568en.pdf. Accessed 10.20.2020.

  • FAO. (2020a). The state of world fisheries and aquaculture 2020. Sustainability in action. Rome.

    Google Scholar 

  • Farran, I., & Mingo-Castel, A. M. (2006). Potato minituber production using aeroponics: Effect of plant density and harvesting intervals. American Journal of Potato Research, 83(1), 47–53. Accessed 21.6.2020.

    Article  Google Scholar 

  • Fecondini, M., Damasio de Faria, A. C., Michelon, N., Mezzetti, M., Orsini, F., & Gianquinto, G. (2009a). Learning the value of gardening: results from an experience of community based simplified hydroponics in north-east Brazil. In II International conference on landscape and urban horticulture 881 (pp. 111–116).

    Google Scholar 

  • Fecondini, M., Michelon, N., Gianquinto, G., Orsini, F., & Mezzetti, M. (2009b). Simplified substrate soilless culture for vegetable production in Trujillo, Peru. In II International conference on landscape and urban horticulture 881 (pp. 163–167).

    Google Scholar 

  • Fontes, M. R. (1973). Controlled-environment horticulture in the Arabian Desert at Abu Dhabi. Horticultural Science, 8, 13–16.

    Google Scholar 

  • Gericke, W. F. (1940) The complete guide to soilless gardening. In The complete guide to soilless gardening. Prentice-Hall.

    Google Scholar 

  • Germer, J., Sauerborn, J., Asch, F., de Boer, J., Schreiber, J., Weber, G., & Müller, J. (2011). Skyfarming an ecological innovation to enhance global food security. Journal für Verbraucherschutz und Lebensmittelsicherheit, 6(2), 237–251.

    Article  Google Scholar 

  • Goddek, S., Espinal, C., Delaide, B., Jijakli, M., Schmautz, Z., Wuertz, S., & Keesman, K. (2016). Navigating towards decoupled aquaponic systems: A system dynamics design approach. Water, 8, 303.

    Article  CAS  Google Scholar 

  • Goddek, S., Joyce, A., Kotzen, B., & Burnell, G. M. (Eds.). (2019a). Aquaponics food production systems: Combined aquaculture and hydroponic production Technologies for the Future (p. 619). Springer.

    Google Scholar 

  • Goddek, S., Joyce, A., Wuertz, S., Körner, O., Bläser, I., Reuter, M., & Keesman, K. J. (2019b). Decoupled aquaponics systems. In Aquaponics food production systems (pp. 201–229). Springer.

    Chapter  Google Scholar 

  • González, A., Cruz, M., Losoya, C., Nobre, C., Loredo, A., Rodríguez, R., Contreras, J., & Belmares, R. (2020). Edible mushrooms as a novel protein source for functional foods. Food & Function, 11(9), 7400–7414.

    Article  Google Scholar 

  • Graves, C. G. (1983). The Nutrient Film Technique. Horticultural Review, 5, 1–44.

    Google Scholar 

  • Grimm, D., & Wösten, H. A. (2018). Mushroom cultivation in the circular economy. Applied Microbiology and Biotechnology, 102(18), 7795–7803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gruda, N., & Tanny, J. (2014). Chapter 10: Protected crops. In: G. R. Dixon & D. E. Aldous (Eds.), Horticulture – plants for people and places,Production Horticulture (Vol 1, pp 327–405). Springer.

    Google Scholar 

  • Gunady, M. G. A., Biswas, W., Solah, V. A., & James, A. P. (2012). Evaluating the global warming potential of the fresh produce supply chain for strawberries, romaine/cos lettuces (Lactuca sativa), and button mushrooms (Agaricus bisporus) in Western Australia using life cycle assessment (LCA). Journal of Cleaner Production, 28, 81e87.

    Article  Google Scholar 

  • Halwart, M., & Gupta, M. V. (Eds.). (2004). Culture of fish in rice fields. FAO.

    Google Scholar 

  • Hanko, J. (2001). Mushroom cultivation for people with disabilities–a training manual. Food and Agriculture Organization of the United Nations, Regional Office for Asia and the Pacific.

    Google Scholar 

  • Hart, H. (1930). Nicolas Theodore De Saussure. Plant Physiology, 5(3), 424–429. Available at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC440232/

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hershey, D. R. (1994). Solution culture hydroponics: History & inexpensive equipment. The American Biology Teacher, 56(2), 111–118.

    Article  Google Scholar 

  • Higgins, C., Margot, H., Warnquist, S., Obeysekare, E., & Mehta, K. (2017, October). Mushroom cultivation in the developing world: a comparison of cultivation technologies. In 2017 IEEE Global Humanitarian Technology Conference (GHTC) (pp. 1–7). IEEE.

    Google Scholar 

  • Hindle, R. L. (2012). A vertical garden: Origins of the vegetation-bearing architectonic structure and system (1938). Studies in the History of Gardens & Designed Landscapes, 32(2), 99–110.

    Google Scholar 

  • Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without soil. College of Agriculture/University of California.

    Google Scholar 

  • Hoevenaars, K., Junge, R., Bardocz, T., & Leskovec, M. (2018). EU policies: New opportunities for aquaponics. Ecocycles, 4(1), 10–15.

    Article  Google Scholar 

  • International Center for Living Aquatic Resources Management, & International Institute of Rural Reconstruction. (2001). Integrated agriculture-aquaculture: a primer (No. 407). Food & Agriculture Org.. Available at http://www.fao.org/3/Y1187E/Y1187E00.htm. Accessed 06-08-2019.

  • Irfanullah, H. M., Azad, M. A. K., Kamruzzaman, M., & Wahed, M. A. (2011). Floating gardening in Bangladesh: a means to rebuild lives after devastating flood. Available at http://nopr.niscair.res.in/handle/123456789/11064. Accessed 06-08-2019.

  • Islam, T., & Atkins, P. (2007). Indigenous floating cultivation: A sustainable agricultural practice in the wetlands of Bangladesh. Development in Practice, 17(1), 130–136.

    Article  Google Scholar 

  • Izquierdo, J. (2005). Simplified hydroponics: a tool for food security in Latin America and the Caribbean. In International conference and exhibition on soilless culture: ICESC 2005 742 (pp. 67–74).

    Google Scholar 

  • Jensen, M. H. (1997a). Hydroponics. Horticultural Science, 32(6), 1018–1021.

    Google Scholar 

  • Jensen, M. H. (1997b). Hydroponics worldwide. In International symposium on growing media and hydroponics 481 (pp. 719–730).

    Google Scholar 

  • Jim, C. Y. (2017). An archaeological and historical exploration of the origins of green roofs. Urban Forestry & Urban Greening, 27, 32–42.

    Article  Google Scholar 

  • Jones, S. (2002). Evolution of aquaponics. Aquaponics J, 6(1).

    Google Scholar 

  • Jones, J. B., Jr. (2014). Complete guide for growing plants hydroponically. CRC Press.

    Book  Google Scholar 

  • Kadhila-Muandingi, N. P., Mubiana, F. S., & Halueendo, K. L. (2008). Mushroom cultivation: A beginners guide. University of Namibia.

    Google Scholar 

  • Kalantari, F., Tahir, O. M., Joni, R. A., & Fatemi, E. (2018). Opportunities and challenges in sustainability of vertical farming: A review. Journal of Landscape Ecology, 11(1), 35–60.

    Article  Google Scholar 

  • Kangmin, L. (1988). Rice-fish culture in China: A review. Aquaculture, 71(3), 173–186.

    Article  Google Scholar 

  • Kashangura, C., Kunjeku, E. C., Chirara, T., Mabveni, A. R. S., Mswaka, A., & Dalu, V. (2005). Manual for mushroom cultivation (especially for growers with limited financial and material resources). Biotechnology Trust of Zimbabwe.

    Google Scholar 

  • Kitaya, Y., Hirai, H., Wei, X., Islam, A. F. M. S., & Yamamoto, M. (2008). Growth of sweet potato cultured in the newly designed hydroponic system for space farming. Advances in Space Research, 41(5), 730–735.

    Article  Google Scholar 

  • Kledal, P. R., König, B., & Matulić, D. (2019). Aquaponics: The ugly duckling in organic regulation. In Aquaponics food production systems (Vol. 487). Springer.

    Google Scholar 

  • Kotzen, B., Emerenciano, M. G. C., Moheimani, N., & Burnell, G. M. (2019). Aquaponics: Alternative types and approaches. In Aquaponics food production systems (pp. 301–330). Springer.

    Chapter  Google Scholar 

  • Koutrotsios, G., Kalogeropoulos, N., Kaliora, A. C., & Zervakis, G. I. (2018). Toward an increased functionality in oyster (Pleurotus) mushrooms produced on grape marc or olive mill wastes serving as sources of bioactive compounds. Journal of Agricultural and Food Chemistry, 66(24), 5971–5983.

    Article  CAS  PubMed  Google Scholar 

  • Kratky, B. A., Maehira, G. T., Cupples, R. J., & Bernabe, C. C. (2005). Non-circulating hydroponic methods for growing tomatoes. In Proceedings of the national agricultural plastics congress (Vol. 32, pp. 31–36).

    Google Scholar 

  • Lang, M. (2020a). Consumer acceptance of blending plant-based ingredients into traditional meat-based foods: Evidence from the meat-mushroom blend. Food Quality and Preference, 79, 103758.

    Article  Google Scholar 

  • Lang, T. (2020b). Feeding Britain: Our food problems and how to fix them. Penguin.

    Google Scholar 

  • Leiva, F. J., Saenz-Díez, J. C., Martínez, E., Jimenez, E., & Blanco, J. (2015). Environmental impact of Agaricus bisporus cultivation process. European Journal of Agronomy, 71, 141e148.

    Article  Google Scholar 

  • Lennard W. A. (2005). Aquaponic integration of Murray Cod (Maccullochella peelii peelii) aquaculture and lettuce (Lactuca sativa) hydroponics. Thesis (Ph.D.). RMIT University.

    Google Scholar 

  • Lennard, W. (2012). Aquaponics system design parameters: Basic system water chemistry. Aquaponic Solutions.

    Google Scholar 

  • Lennard, W., & Goddek, S. (2019). Aquaponics: The basics. In S. Goddek, A. Alyssa Joyce, B. Kotzen, & G. M. Burnell (Eds.), Aquaponics food production systems: Combined aquaculture and hydroponic production technologies for the future. Springer.

    Google Scholar 

  • Lewis, W. M., Yopp, J. H., Schramm, H. L., Jr., & Brandenburg, A. M. (1978). Use of hydroponics to maintain quality of recirculated water in a fish culture system. Transactions of the American Fisheries Society, 107(1), 92–99.

    Article  Google Scholar 

  • Love, D. C., Uhl, M. S., & Genello, L. (2015a). Energy and water use of a small-scale raft aquaponics system in Baltimore, Maryland, United States. Aquaculture Engineering, 68, 19–27.

    Article  Google Scholar 

  • Love, D. C., Fry, J. P., Li, X., Hill, E. S., Genello, L., Semmens, K., & Thompson, R. E. (2015b). Commercial aquaponics production and profitability: Findings from an international survey. Aquaculture, 435, 67–74.

    Article  Google Scholar 

  • Mackowiak, C. L., Wheeler, R. M., Stutte, R. M., Yorio, R. M., & Ruffe, L. M. (1998). A recirculating hydroponic system for studying peanut (Arachis hypogaea L.). HortScience, 33, 650–651.

    Article  CAS  PubMed  Google Scholar 

  • Marulanda, C., & Izquierdo, J. (1993). Popular hydroponic gardens. Audio visual course.

    Google Scholar 

  • McDougall, R., Kristiansen, P., & Rader, R. (2019). Small-scale urban agriculture results in high yields but requires judicious management of inputs to achieve sustainability. Proceedings of the National Academy of Sciences of the United States of America, 116(1), 129–134.

    Article  CAS  PubMed  Google Scholar 

  • Michelon, N., da Silva, D. F., de Faria, F. D., Gianquinto, G., & Orsini, F. (2006, February). Improving yield of vegetables by using soilless micro-garden technologies in peri-urban area of North-East Brazil. In VIII International symposium on protected cultivation in mild winter climates: advances in soil and soilless cultivation under 747 (pp. 57–65).

    Google Scholar 

  • Miličić, V., Thorarinsdottir, R., Santos, M. D., & Hančič, M. T. (2017). Commercial aquaponics approaching the European market: To consumers’ perceptions of aquaponics products in Europe. Water, 9(2), 80.

    Article  Google Scholar 

  • Morehart, C. T. (2016). Chinampa agriculture, surplus production, and political change at Xaltocan, Mexico. Ancient Mesoamerica, 27(1), 183–196.

    Article  Google Scholar 

  • Murray, F., Bostock, J., & Fletcher, D. (2014). Review of recirculation aquaculture system technologies and their commercial application.

    Google Scholar 

  • Murthy, P. S., & Naidu, M. M. (2012). Sustainable management of coffee industry by-products and value addition – A review. Resources, Conservation and Recycling, 66, 45–58.

    Article  Google Scholar 

  • Nerantzis, E., Koliopoulos, T., & Sharma, S. (2018). Urban vertical hydroponics. Emerging Environmental Technologies and Health Protection, 1, 13–18.

    Google Scholar 

  • O’Sullivan, C. A., Bonnett, G. D., McIntyre, C. L., Hochman, Z., & Wasson, A. P. (2019). Strategies to improve the productivity, product diversity and profitability of urban agriculture. Agricultural Systems, 174, 133–144.

    Article  Google Scholar 

  • Onofre, S. A. (2005). The floating gardens in México Xochimilco, world heritage risk site. City & Time, 1(3), 5.

    Google Scholar 

  • Palm, H. W., Knaus, U., Appelbaum, S., Goddek, S., Strauch, S. M., Vermeulen, T., Jijakli, M. H., & Kotzen, B. (2018). Towards commercial aquaponics: A review of systems, designs, scales and nomenclature. Aquaculture International, 26(3), 813–842.

    Article  Google Scholar 

  • Palm, H. W., Knaus, U., Appelbaum, S., Strauch, S. M., & Kotzen, B. (2019). Coupled aquaponics systems. In Aquaponics food production systems (pp. 163–199). Springer.

    Chapter  Google Scholar 

  • Paris, H. S., Janick, J., & Pitrat, M. (2008). What the Roman emperor Tiberius grew in his greenhouses.

    Google Scholar 

  • Pinstrup-Andersen, P. (2018). Is it time to take vertical indoor farming seriously? Global Food Security, 17, 233–235.

    Article  Google Scholar 

  • Poulet, L., Fontaine, J. P., & Dussap, C. G. (2016). Plant’s response to space environment: A comprehensive review including mechanistic modelling for future space gardeners. Botany Letters, 163(3), 337–347.

    Article  Google Scholar 

  • Pourias, J., Duchemin, E., & Aubry, C. (2015). Products from urban collective gardens: Food for thought or for consumption? Insights from Paris and Montreal. Journal of Agriculture, Food Systems, and Community Development, 5(2), 175–199.

    Google Scholar 

  • Rahdriawan, M., & Arriani, R. R. (2020). Motives and dynamic of community-based aquaponics for urban farming in Semarang. E&ES, 448(1), 012096.

    Google Scholar 

  • Rainbow, E. (2010). Experiences in development of green compost as a peat replacement material. Proceedings of The International Plants’ Propagators’ Society 60.

    Google Scholar 

  • Rakocy, J. E. (2012). Chapter 14: Aquaponics – Integrating fish and plant culture. In J. H. Tidwell (Ed.), Aquaculture production systems (pp. 344–386). Wiley-Blackwell.

    Chapter  Google Scholar 

  • Rakocy, J. E, Bailey, D. S., Shultz, K. A. , & Cole, W. M. (1997) Evaluation of a commercial-scale aquaponic unit for the production of tilapia and lettuce. In: K. Fitzsimmons ed. Tilapia Aquaculture. Proceedings from the fourth international symposium on Tilapia in Aquaculture. Orlando, FL, pp. 357–372.

    Google Scholar 

  • Rakocy, J., Shultz, R. C., Bailey, D. S., & Thoman, E. S. (2003). Aquaponic production of tilapia and basil: comparing a batch and staggered cropping system. In South pacific soilless culture conference-SPSCC 648 (pp. 63–69).

    Google Scholar 

  • Rakocy, J. E., Bailey, D. S., Shultz, R. C., & Danaher, J. J. (2011). A commercial-scale aquaponic system developed at the University of the Virgin Islands. In Proceedings of the 9th international symposium on tilapia in aquaculture (pp. 336–343). AquaFish Collaborative Research Support Program.

    Google Scholar 

  • Rao, I. M. (2009). Essential plant nutrients and their functions. Centro Internacional de Agricultura Tropical (CIAT). Cali, Colombia. Working Document (36).

    Google Scholar 

  • Renkui, C., Dashu, N., & Jianguo, W. (1995). Rice–fish culture in China: The past, present, and future. In K. T. Mackay (Ed.), Rice–fish culture in China. International Development Research Centre.

    Google Scholar 

  • Resh, H. M. (2013). Hydroponic food production: A definitive guidebook for the advanced home gardener and the commercial hydroponic grower. CRC Press.

    Google Scholar 

  • Rinker, D. L. (2002). Handling and using “spent” mushroom substrate around the world. In J. E. Sánchez, G. Huerta, & E. Montiel (Eds.), Mushroom biology and mushroom products (pp. 43–60). Impresos Júpiter.

    Google Scholar 

  • Roberto, K. (2000) How to hydroponics. FutureGarden. ISBN - 0-9672026-0-4.

    Google Scholar 

  • Robinson, B., Winans, K., Kendall, A., Dlott, J., & Dlott, F. (2018). A life cycle assessment of Agaricus bisporus mushroom production in the USA. International Journal of Life Cycle Assessment, 24, 456e467.

    Google Scholar 

  • Rodríguez-Delfín, A., Gruda, N., Eigenbrod, C., Orsini, F., & Gianquinto, G. (2017). Soil based and simplified hydroponics rooftop gardens. In Rooftop urban agriculture (pp. 61–81). Springer.

    Chapter  Google Scholar 

  • Rosmiza, M. Z., Davies, W. P., Rosniza Aznie, C. R., Jabil, M. J., & Mazdi, M. (2016). Prospects for increasing commercial mushroom production in Malaysia: Challenges and opportunities. Mediterranean Journal of Social Sciences, 7(1 S1), 406–406.

    Google Scholar 

  • Rotterzwam. (n.d.). 10 things you need to know when cultivating mushrooms. Available at https://s3.amazonaws.com/kajabi-storefronts-production/sites/43424/themes/739193/downloads/OR1q1cQmR72sqJmmZmwg_Ebook1_CultivatingMushrooms_1.4.pdf. Accessed 12.06.2020.

  • Rubio-Portillo, E., Villamor, A., Fernandez-Gonzalez, V., Antón, J., & Sanchez-Jerez, P. (2019). Exploring changes in bacterial communities to assess the influence of fish farming on marine sediments. Aquaculture, 506, 459–464.

    Article  Google Scholar 

  • Saha, S.K. (2010) Soilless cultivation for landless people: An alternative livelihood practice through Indigenous hydroponic agriculture in flood-prone Bangladesh. Beppu: Ritsumeikan Asia Pacific University. Available at https://secure.apu.ac.jp/rcaps/uploads/fckeditor/publications/journal/RJAPS_V27_Saha.pdf. Accessed: 07/08/2019.

  • Sambo, P., Nicoletto, C., Giro, A., Pii, Y., Valentinuzzi, F., Mimmo, T., Lugli, P., Orzes, G., Mazzetto, F., Astolfi, S., & Terzano, R. (2019). Hydroponic solutions for soilless production systems: Issues and opportunities in a smart agriculture perspective. Frontiers in Plant Science, 10.

    Google Scholar 

  • Sánchez, C. (2004). Modern aspects of mushroom culture technology. Applied Microbiology and Biotechnology, 64(6), 756–762.

    Article  PubMed  CAS  Google Scholar 

  • Savidov, N., & Brooks, A. B. (2004). Evaluation and development of aquaponics production and product market capabilities in Alberta. Crop Diversification Centre South, Alberta Agriculture, Food and Rural Development.

    Google Scholar 

  • Singh, R. P., & Mishra, K. K. (2008). Mushroom cultivation.

    Google Scholar 

  • Somerville, C., Cohen, M., Pantanella, E., Stankus, A., & Lovatelli, A. (2014). Small-scale aquaponic food production: Integrated fish and plant farming. FAO Fisheries and Aquaculture Technical Paper, 589, I.

    Google Scholar 

  • Song, X. P., Tan, H. T., & Tan, P. Y. (2018). Assessment of light adequacy for vertical farming in a tropical city. Urban Forestry & Urban Greening, 29, 49–57.

    Article  Google Scholar 

  • Specht, K., & Sanyé-Mengual, E. (2017). Risks in urban rooftop agriculture: Assessing stakeholders’ perceptions to ensure efficient policymaking. Environmental Science & Policy, 69, 13–21.

    Article  Google Scholar 

  • Stamets, P., & Chilton, J. S. (1983). The mushroom cultivator. First Washington.

    Google Scholar 

  • Stuart, N. W. (1948). Growing plants without soil. The Scientific Monthly, 66(4), 273–282.

    Google Scholar 

  • Sure Harvest. (2017). The mushroom sustainability story: water, energy, and climate environmental metrics. Available at https://www.mushroomcouncil.com/wp-content/uploads/2017/12/Mushroom-Sustainability-Story-2017.pdf. Accessed 10.09.2020.

  • Thórarinsdóttir, R. I., Kledal, P. R., Skar, S. L. G., Sustaeta, F., Ragnarsdóttir, K. V., Mankasingh, U., Pantanella, E., Ven, R.V.D., & Shultz, C., (2015). Aquaponics guidelines.

    Google Scholar 

  • Todd, N., & Todd, J. (Eds.). (1976) Journal of the New Alchemists – Vol. 3. Available at https://newalchemists.net/publications/new-alchemy-1971-1991/. Accessed on 23.03.2020.

  • Tokimoto, T., Kawasaki, N., Nakamura, T., Akutagawa, J., & Tanada, S. (2005). Removal of lead ions in drinking water by coffee grounds as vegetable biomass. Journal of Colloid and Interface Science, 281(1), 56–61.

    Article  CAS  PubMed  Google Scholar 

  • Tokunaga, K., Tamaru, C., Ako, H., & Leung, P. (2013). Economics of commercial aquaponics in Hawaii. In: Aquaponics in Hawaii conference. University of Hawaii at Manoa.

    Google Scholar 

  • Tsing, A. L. (2015). The mushroom at the end of the world: On the possibility of life in capitalist ruins. Princeton University Press.

    Book  Google Scholar 

  • Van Woensel, L., & Archer, G. (2015). Ten Technologies which could change our lives. Potential impacts and policy implications. EPRS (European Parliament Research Studies). Available at https://www.europarl.europa.eu/EPRS/EPRS_IDAN_527417_ten_trends_to_change_your_life.pdf. Accessed 03.11.2019.

  • Verner, D., Vellani, S., Klausen, A. L., & Tebaldi, E. (2017). Frontier agriculture for improving refugee livelihoods: Unleashing climate-smart and water-saving agriculture technologies in MENA. World Bank.

    Book  Google Scholar 

  • Villarroel, M., Junge, R., Komives, T., König, B., Plaza, I., Bittsánszky, A., & Joly, A. (2016). Survey of aquaponics in Europe. Water, 8(10), 468.

    Article  Google Scholar 

  • Wheeler, R. M., Mackowiak, C. L., Sager, C. L., Knott, C. L., & Hinkle, C. R. (1990). Potato growth and yield using nutrient film technique (NFT). Am. Potato J., 67, 177–187.

    Article  CAS  PubMed  Google Scholar 

  • Winterborne, J. (2005). Hydroponics: Indoor horticulture. Pukka Press.

    Google Scholar 

  • Yang, X., He, J., Li, C., Ma, J., Yang, Y., & Xu, J. (2008). Matsutake trade in Yunnan Province, China: An overview. Economic Botany, 62(3), 269–277.

    Article  Google Scholar 

  • Yildiz, H. Y., Radosavljevic, V., Parisi, G., & Cvetkovikj, A. (2019). Insight into risks in aquatic animal health in aquaponics. Aquaponics Food Production Systems, 435.

    Google Scholar 

  • Yoo, Y. B., Oh, M. J., Oh, Y. L., Shin, P. G., Jang, K. Y., & Kong, W. S. (2016). Development trend of the mushroom industry. Journal of Mushroom, 14(4), 142–154.

    Article  Google Scholar 

  • Yoon, S. J., & Woudstra, J. (2007). Advanced horticultural techniques in Korea: The earliest documented greenhouses. Garden History, 68–84.

    Google Scholar 

  • Zhang, Y., Geng, W., Shen, Y., Wang, Y., & Dai, Y. C. (2014). Edible mushroom cultivation for food security and rural development in China: Bio-innovation, technological dissemination and marketing. Sustainability, 6(5), 2961–2973.

    Article  Google Scholar 

  • Agaricus. (2020). Available at https://en.agaricus.ru/agaricus/from-the-history. Accessed 05.10.2020.

  • Cision. (2020). Available at https://www.prnewswire.com/news-releases/worldwide-aquaponics-industry-2020-to-2025%2D%2D-cagr-of-14-5-expected-during-this-period-301120310.html#:~:text=Owing%20to%20such%20trends%2C%20the,15.5%25%20going%20through%20to%202025. Accessed 18.11.2020.

  • CNG Farming. (2019). Available at https://www.cngfarming.org/aquaponics. Accessed 05.12.2019.

  • D&B. (2020). Available at https://www.dnb.com/business-directory/top-results.html?term=thanet%20earth&page=1; and https://www.dnb.com/business-directory/company-profiles.thanet_earth_holdings_limited.7956888befb7bada1866b4b7f4c50413.html. Accessed 18.11.2020.

  • FAO. (2020b). Available at http://www.fao.org/faostat/en/#data/FBS/visualize. Accessed 10.04.2021.

  • Farm Flavor. (2019). Available at https://www.farmflavor.com/florida/walt-disney-world-farm-grows-magical-produce-earth/). Accessed 19.11.2019.

  • How Stuff Works. (2019). Available at https://home.howstuffworks.com/lawn-garden/professional-landscaping/hydroponics1.htm. Accessed 28.09.2019.

  • Kew Gardens. (2019). Available at https://www.kew.org/kew-gardens/whats-in-the-gardens/palm-house, Accessed 28.09.2019.

  • Markets and Markets. (2020). Available at https://www.marketsandmarkets.com/Market-Reports/hydroponic-market-94055021.html#utm_source=PRnewswire&utm_medium=Referral&utm_campaign=PaidPR. Accessed 15.11.2020.

  • Mordor Intelligence. (2020). Available at https://www.mordorintelligence.com/industry-reports/aquaponics-market. Accessed 18.11.2020.

  • New World Encyclopedia. (2019). Available at https://www.newworldencyclopedia.org/entry/Greenhouse#History. Accessed 28.09.2019.

  • The GCRI Trust. (2019). Available at http://www.gcritrust.org/history-gcri/. Accessed 15.10.2019.

  • Two Wests. (2019). Available at https://www.twowests.co.uk/blog/the-history-of-hydroponics). Accessed 13.10.2019.

  • Verti-gro. (2019). Available at www.vertigro.com. Accessed 28.11.2019.

  • Zipgrow. (2019). Available at www.zipgrow.com. Accessed 28.11.2019.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Caputo, S. (2022). History, Techniques and Technologies of Soil-Less Cultivation. In: Small Scale Soil-less Urban Agriculture in Europe. Urban Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-030-99962-9_4

Download citation

Publish with us

Policies and ethics