[go: up one dir, main page]

Skip to main content

Recommender Systems: When Memory Matters

  • Conference paper
  • First Online:
Advances in Information Retrieval (ECIR 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13186))

Included in the following conference series:

  • 2777 Accesses

Abstract

In this paper, we study the effect of non-stationarities and memory in the learnability of a sequential recommender system that exploits user’s implicit feedback. We propose an algorithm, where model parameters are updated user per user by minimizing a ranking loss over blocks of items constituted by a sequence of unclicked items followed by a clicked one. We illustrate through empirical evaluations on four large-scale benchmarks that removing non-stationarities, through an empirical estimation of the memory properties, in user’s behaviour interactions allows to gain in performance with respect to MAP and NDCG.

A. Burashnikova is supported by the Analytical center under the RF Government (subsidy agreement 000000D730321P5Q0002, Grant No. 70-2021-00145 02.11.2021). Y. Maximov is supported by LANL LDRD projects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.kaggle.com/c/outbrain-click-prediction.

  2. 2.

    The source code will be made available for research purpose.

References

  1. Boutahar, M., Marimoutou, V., Nouira, L.: Estimation methods of the long memory parameter: Monte Carlo analysis and application. J. Appl. Stat. 34(3), 261–301 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brillinger, D.R.: Time series: data analysis and theory. In: SIAM (2001)

    Google Scholar 

  3. Burashnikova, A., Maximov, Y., Clausel, M., Laclau, C., Iutzeler, F., Amini, M.-R.: Learning over no-preferred and preferred sequence of items for robust recommendation. J. Artif. Intell. Res. 71, 121–142 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  4. Donkers, T., Loepp, B., Ziegler, J.: Sequential user-based recurrent neural network recommendations. In: Proceedings of the Eleventh ACM Conference on Recommender Systems, pp. 152–160 (2017)

    Google Scholar 

  5. Fang, H., Zhang, D., Shu, Y., Guo, G.: Deep learning for sequential recommendation: algorithms, influential factors, and evaluations. ACM Trans. Inf. Syst. 39(1), 1–42 (2020)

    Google Scholar 

  6. Geweke, J., Porter-Hudak, S.: The estimation and application of long memory time series models. J. Time Ser. Anal. 4(4), 221–238 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Harper, F.M., Konstan, J.A.: The movielens datasets: history and context. ACM Trans. Interact. Intell. Syst. 5(4), 1–19 (2015)

    Article  Google Scholar 

  8. Hidasi, B., Karatzoglou, A.: Recurrent neural networks with top-k gains for session-based recommendations. In: ACM International Conference on Information and Knowledge Management, pp. 843–852 (2018)

    Google Scholar 

  9. Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. In: International Conference on Data Mining, pp. 263–272 (2008)

    Google Scholar 

  10. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian personalized ranking from implicit feedback. In: Proceedings of the Conference on Uncertainty in Artificial Intelligence, pp. 452–461 (2009)

    Google Scholar 

  11. Sidana, S., Laclau, C., Amini, M.: Learning to recommend diverse items over implicit feedback on PANDOR. In: Proceedings of the 12th ACM Conference on Recommender Systems, pp. 427–431 (2018)

    Google Scholar 

  12. Sidana, S., Laclau, C., Amini, M., Vandelle, G., Bois-Crettez, A.: KASANDR: a large-scale dataset with implicit feedback for recommendation. In: Proceedings of the International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1245–1248 (2017)

    Google Scholar 

  13. Tang, J., Wang, K.: Personalized top-N sequential recommendation via convolutional sequence embedding. In: Proceedings of the ACM International Conference on Web Search and Data Mining, pp. 565–573 (2018)

    Google Scholar 

  14. Zhang, S., Yao, L., Sun, A., Tay, Y.: Deep learning based recommender system: a survey and new perspectives. ACM Comput. Surv. 52(1), 1–38 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra Burashnikova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Burashnikova, A., Clausel, M., Amini, MR., Maximov, Y., Dante, N. (2022). Recommender Systems: When Memory Matters. In: Hagen, M., et al. Advances in Information Retrieval. ECIR 2022. Lecture Notes in Computer Science, vol 13186. Springer, Cham. https://doi.org/10.1007/978-3-030-99739-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-99739-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-99738-0

  • Online ISBN: 978-3-030-99739-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics