[go: up one dir, main page]

Skip to main content

Dual-Channel Speech Enhancement Using Neural Network Adaptive Beamforming

  • Conference paper
  • First Online:
Communications and Networking (ChinaCom 2021)

Abstract

Dual-channel speech enhancement based on traditional beamforming is difficult to effectively suppress noise. In recent years, it is promising to replace beamforming with a neural network that learns spectral characteristic. This paper proposes a neural network adaptive beamforming end-to-end dual-channel model for speech enhancement task. First, the LSTM layer is used to directly process the original speech waveform to estimate the time-domain beamforming filter coefficients of each channel and convolve and sum it with the input speech. Second, we modified a fully-convolutional time-domain audio separation network (Conv-TasNet) into a network suitable for speech enhancement which is called Denoising-TasNet to further enhance the output of the beamforming. The experimental results show that the proposed method is better than convolutional recurrent network (CRN) model and several popular noise reduction methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Xia, Y., Braun, S., Reddy, C.K., Dubey, H., Cutler, R., Tashev, I.: Weighted speech distortion losses for neural-network-based real-time speech enhancement. In: ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 871–875 (2020)

    Google Scholar 

  2. Van Veen, B.D., Buckley, K.M.: Beamforming: a versatile approach to spatial filtering. IEEE ASSP Mag. 5(2), 4–24 (1988)

    Article  Google Scholar 

  3. Hoshuyama, O., Sugiyama, A., Hirano, A.: A robust adaptive beamformer for microphone arrays with a blocking matrix using constrained adaptive filters. IEEE Trans. Signal Process. 47(10), 2677–2684 (1999)

    Article  Google Scholar 

  4. Pfeifenberger, L., Zohrer, M., Pernkopf, F.: Eigenvector-based speech mask estimation for multi-channel speech enhancement. IEEE Trans. Audio Speech Lang. Process. 27(12), 2162–2172 (2019)

    Article  Google Scholar 

  5. Pfeifenberger, L., Pernkopf, F.: Blind source extraction based on a direction-dependent a-priori SNR. In: Fifteenth Annual Conference of the International Speech Communication Association (2014)

    Google Scholar 

  6. Luo, Y., Chen, Z., Mesgarani, N., Yoshioka, T.: End-to-end microphone permutation and number invariant multi-channel speech separation. In: ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6394–6398 (2020)

    Google Scholar 

  7. Li, B., Sainath, T.N., Weiss, R.J., Wilson, K.W., Bacchiani, M.: Neural network adaptive beamforming for robust multichannel speech recognition. Interspeech 2016, 1976–1980 (2016)

    Google Scholar 

  8. Sainath, T.N., et al.: Multichannel signal processing with deep neural networks for automatic speech recognition. IEEE/ACM Trans. Audio Speech Lang. Process. 25(5), 965–979 (2017)

    Article  Google Scholar 

  9. Luo, Y., Han, C., Mesgarani, N., Ceolini, E., Liu, S.-C.: FasNet: low-latency adaptive beamforming for multi-microphone audio processing. In: IEEE Automatic Speech Recognition and Understanding Workshop (ASRU) 2019, pp. 260–267 (2019)

    Google Scholar 

  10. Wang, Z.-Q., Wang, P., Wang, D.: Complex spectral mapping for single-and multi-channel speech enhancement and robust ASR. IEEE/ACM Trans. Audio Speech Lang. Process. 28, 1778–1787 (2020)

    Article  Google Scholar 

  11. Benesty, J., Chen, J., Huang, Y.: Microphone Array Signal Processing, vol. 1. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78612-2

    Book  Google Scholar 

  12. Luo, Y., Mesgarani, N.: Conv-TasNet: surpassing ideal time-frequency magnitude masking for speech separation. IEEE/ACM Trans. Audio Speech Lang. Process. 27(8), 1256–1266 (2019)

    Article  Google Scholar 

  13. Fu, S.W., Tsao, Y., Lu, X., Kawai, H.: Raw waveform-based speech enhancement by fully convolutional networks. In: Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), pp. 006–012. IEEE (2017)

    Google Scholar 

  14. Kolbæk, M., Tan, Z.-H., Jensen, S.H., Jensen, J.: On loss functions for supervised monaural time-domain speech enhancement. IEEE/ACM Trans. Audio Speech Lang. Process. 28, 825–838 (2020)

    Article  Google Scholar 

  15. Tawara, N., Kobayashi, T., Ogawa, T.: Multi-channel speech enhancement using time-domain convolutional denoising autoencoder. In: INTERSPEECH, pp. 86–90 (2019)

    Google Scholar 

  16. Allen, J.B., Berkley, D.A.: Image method for efficiently simulating small-room acoustics. J. Acoust. Soc. Am. 65(4), 943–950 (1979)

    Article  Google Scholar 

  17. Reddy, C.K., Gopal, V., Cutler, R.: DNSMOS: a non-intrusive perceptual objective speech quality metric to evaluate noise suppressors. arXiv e-prints, pp. arXiv-2010 (2020)

    Google Scholar 

  18. Hendriks, R.C., Heusdens, R., Jensen, J.: MMSE based noise PSD tracking with low complexity. In: 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 4266–4269. IEEE (2010)

    Google Scholar 

  19. López-Espejo, I., González, J.A., Gómez, Á.M., Peinado, A.M.: A deep neural network approach for missing-data mask estimation on dual-microphone smartphones: application to noise-robust speech recognition. In: Navarro Mesa, J.L., et al. (eds.) IberSPEECH 2014. LNCS (LNAI), vol. 8854, pp. 119–128. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13623-3_13

    Chapter  Google Scholar 

  20. Tan, K., Zhang, X., Wang, D.L.: Real-time speech enhancement using an efficient convolutional recurrent network for dual-microphone mobile phones in close-talk scenarios. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2019)

    Google Scholar 

  21. Tammen, M., Doclo, S.: Deep multi-frame MVDR filtering for single-microphone speech enhancement. In: ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8443–8447. IEEE (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Jiang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 40279 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, T., Liu, H., Shuai, C., Wang, M., Zhou, Y., Gan, L. (2022). Dual-Channel Speech Enhancement Using Neural Network Adaptive Beamforming. In: Gao, H., Wun, J., Yin, J., Shen, F., Shen, Y., Yu, J. (eds) Communications and Networking. ChinaCom 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 433. Springer, Cham. https://doi.org/10.1007/978-3-030-99200-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-99200-2_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-99199-9

  • Online ISBN: 978-3-030-99200-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics