[go: up one dir, main page]

Skip to main content

A Survey of Machine Learning and Deep Learning Based DGA Detection Techniques

  • Conference paper
  • First Online:
Smart Computing and Communication (SmartCom 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13202))

Included in the following conference series:

Abstract

Botnets are the most commonly used mechanisms for current cyberattacks such as DDoS, ransomware, email spamming, phishing data, etc. Botnets deploy the Domain Generation Algorithm (DGA) to conceal domain names of Command & Control (C&C) servers by generating several fake domain names. A sophisticated DGA can circumvent the traditional detection methods and successfully communicate with the C&C. Several detection methods like DNS sinkhole, DNS filtering and DNS logs analysis have been intensively studied to neutralize DGA. However, these methods have a high noise rate and require a massive amount of computational resources. To tackle this issue, several researchers leveraged Machine learning (ML) and Deep Learning (DL) algorithms to develop lightweight and cost-effective detection methods. The purpose of this paper is to investigate and evaluate the DGA detection methods based on ML/DL published in the last three years. After analyzing the relevant literature strengths and limitations, we conclude that low detection speed, encrypted DNS sensitivity, data imbalance sensitivity, and low detection accuracy with variant or unknown DGA are most likely the current research trends and opportunities. As far as we know, this survey is the first of its kind to discuss DGA detection techniques based on ML/DL in-depth, as well as analysis of their limitations and future trends.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gao, Y., Iqbal, S., et al.: Performance and power analysis of high-density multi-GPGPU architectures: a preliminary case study. In: IEEE HPCC 2015, pp. 29–35 (2015)

    Google Scholar 

  2. Zhao, H., Chen, M., et al.: A novel pre-cache schema for high performance android system. FGCS 56, 766–772 (2016)

    Article  Google Scholar 

  3. Zhang, Z., Wu, J., Deng, J., Qiu, M.: Jamming ack attack to wireless networks and a mitigation approach. In: IEEE GLOBECOM, pp. 1–5 (2008)

    Google Scholar 

  4. Qiu, H., Qiu, M., Memmi, G., Ming, Z., Liu, M.: A dynamic scalable blockchain based communication architecture for IoT. In: Qiu, M. (ed.) SmartBlock 2018. LNCS, vol. 11373, pp. 159–166. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05764-0_17

    Chapter  Google Scholar 

  5. Thakur, K., Qiu, M., Gai, K., Ali, M.L.: An investigation on cyber security threats and security models. In: CSCloud 2015, pp. 307–311 (2015)

    Google Scholar 

  6. Gai, K., Qiu, M., Sun, X., Zhao, H.: Security and privacy issues: a survey on fintech. In: Qiu, M. (ed.) SmartCom 2016. LNCS, vol. 10135, pp. 236–247. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52015-5_24

    Chapter  Google Scholar 

  7. Cyber security statistics. https://www.mcafee.com/enterprise/en-us/lp/threats-reports/oct-2021.html. Accessed 07 Oct 2021

  8. Advanced threat research report 2021. https://purplesec.us/resources/cyber-security-statistics/. Accessed 09 Oct 2021

  9. Mid-year update sonicwall cyber threat report. https://purplesec.us/resources/cyber-security-statistics/. Accessed 25 Sept 2021

  10. Kumar, A.D., et al.: Enhanced domain generating algorithm detection based on deep neural networks. In: Alazab, M., Tang, M.J. (eds.) Deep Learning Applications for Cyber Security. ASTSA, pp. 151–173. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-13057-2_7

    Chapter  Google Scholar 

  11. Almashhadani, A.O., Kaiiali, M., Carlin, D., Sezer, S.: MaldomDetector: a system for detecting algorithmically generated domain names with machine learning. Comput. Secur. 93, 101787 (2020)

    Article  Google Scholar 

  12. Shetu, S.F., Saifuzzaman, M., Moon, N.N., Nur, F.N.: A survey of botnet in cyber security. In: 2019 2nd ICCT, pp. 174–177. IEEE (2019)

    Google Scholar 

  13. Maikudi, U., Abisoye, O., Ganiyu, S., Bashir, S.A.: A literature survey on IoT botnet detection techniques (2021)

    Google Scholar 

  14. Xing, Y., Shu, H., Zhao, H., Li, D., Guo, L.: Survey on botnet detection techniques: Classification, methods, and evaluation. Math. Probl. Eng. (2021)

    Google Scholar 

  15. Anagnostopoulos, M., Kambourakis, G., Drakatos, P., Karavolos, M., Kotsilitis, S., Yau, D.K.Y.: Botnet command and control architectures revisited: tor hidden services and fluxing. In: Bouguettaya, A., et al. (eds.) WISE 2017. LNCS, vol. 10570, pp. 517–527. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68786-5_41

    Chapter  Google Scholar 

  16. Grizzard, J.B., Sharma, V., Nunnery, C., Kang, B.B., Dagon, D.: Peer-to-peer botnets: overview and case study. HotBots 7(2007) (2007)

    Google Scholar 

  17. Wang, P., Sparks, S., Zou, C.C.: An advanced hybrid peer-to-peer botnet. IEEE Trans. Dependable Secure Comput. 7(2), 113–127 (2008)

    Article  Google Scholar 

  18. Gai, K., Wu, Y., Zhu, L., Zhang, Z., Qiu, M.: Differential privacy-based blockchain for industrial internet-of-things. IEEE Trans. Industr. Inf. 16(6), 4156–4165 (2019)

    Article  Google Scholar 

  19. Karim, A., Salleh, R.B., Shiraz, M., Shah, S.A.A., Awan, I., Anuar, N.B.: Botnet detection techniques: review, future trends, and issues. J. Zhejiang Univ. Sci. C 15(11), 943–983 (2014). https://doi.org/10.1631/jzus.C1300242

    Article  Google Scholar 

  20. Ghalati, N.F., Ghalaty, N.F., Barata, J.: Towards the detection of malicious URL and domain names using machine learning. In: Camarinha-Matos, L.M., Farhadi, N., Lopes, F., Pereira, H. (eds.) DoCEIS 2020. IAICT, vol. 577, pp. 109–117. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45124-0_10

    Chapter  Google Scholar 

  21. Sivaguru, R., Peck, J., Olumofin, F., Nascimento, A., De Cock, M.: Inline detection of DGA domains using side information. IEEE Access 8, 141910–141922 (2020)

    Article  Google Scholar 

  22. Wang, Q., Li, L., Jiang, B., Lu, Z., Liu, J., Jian, S.: Malicious domain detection based on K-means and SMOTE. In: Krzhizhanovskaya, V.V., et al. (eds.) ICCS 2020. LNCS, vol. 12138, pp. 468–481. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50417-5_35

    Chapter  Google Scholar 

  23. Sun, X., Wang, Z., Yang, J., Liu, X.: Deepdom: malicious domain detection with scalable and heterogeneous graph convolutional networks. Comput. Secur. 99, 102057 (2020)

    Article  Google Scholar 

  24. Soleymani, A., Arabgol, F.: A novel approach for detecting DGA-based botnets in DNS queries using machine learning techniques. J. Comput. Netw. Comm. (2021)

    Google Scholar 

  25. Zhu, J., Zou, F.: Detecting malicious domains using modified SVM model. In: IEEE 21st HPCC, pp. 492–499 (2019)

    Google Scholar 

  26. Kim, K., Tanuwidjaja, H.C.: Privacy-preserving deep learning a comprehensive survey (2021)

    Google Scholar 

  27. Xu, C., Shen, J., Du, X.: Detection method of domain names generated by DGAs based on semantic representation and deep neural network. Comput. Secur. 85, 77–88 (2019)

    Article  Google Scholar 

  28. Plohmann, D., Yakdan, K., Klatt, M., Bader, J., Gerhards-Padilla, E.: A comprehensive measurement study of domain generating malware. In: 25th \(\{\)USENIX\(\}\) Security Symposium (\(\{\)USENIX\(\}\) Security 16), pp. 263–278 (2016)

    Google Scholar 

  29. Vinayakumar, R., Soman, K.P., Poornachandran, P., Alazab, M., Jolfaei, A.: DBD: deep learning DGA-based botnet detection. In: Alazab, M., Tang, M.J. (eds.) Deep Learning Applications for Cyber Security. ASTSA, pp. 127–149. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-13057-2_6

    Chapter  Google Scholar 

  30. Highnam, K., Puzio, D., Luo, S., Jennings, N.R.: Real-time detection of dictionary DGA network traffic using deep learning. SN Comput. Sci. 2(2), 1–17 (2021)

    Article  Google Scholar 

  31. Alexa top 1 m. http://s3.amazonaws.com/alexa-static/top-1m.csv.zip. Accessed 05 Oct 2021

  32. Shahzad, H., Sattar, A.R., Skandaraniyam, J.: DGA domain detection using deep learning. In: IEEE 5th International Conference on Cryptography, Security and Privacy (CSP), pp. 139–143 (2021)

    Google Scholar 

  33. Cisco umbrella popularity list. http://s3-us-west-1.amazonaws.com/umbrella-static/top-1m.csv.zip. Accessed 05 Oct 2021

  34. Osint feeds from bambenek. http://osint.bambenekconsulting.com/feeds/. Accessed 05 Oct 2021

  35. Vinayakumar, R., Alazab, M., Srinivasan, S., et al.: A visualized botnet detection system based deep learning for the internet of things networks of smart cities. IEEE Trans. Ind. Appl. 56, 4436–4456 (2020)

    Article  Google Scholar 

  36. Namgung, J., Son, S., Moon, Y.S.: Efficient deep learning models for dga domain detection. Secur. Commun. Netw. (2021)

    Google Scholar 

  37. Wang, C., Cho, K., Gu, J.: Neural machine translation with byte-level subwords. In: AAAI Conference, vol. 34, pp. 9154–9160 (2020)

    Google Scholar 

  38. Drichel, A., Meyer, U., Schüppen, S., Teubert, D.: Making use of NXt to nothing: the effect of class imbalances on DGA detection classifiers. In: 15th International Conference on Availability, Reliability and Security, pp. 1–9 (2020)

    Google Scholar 

  39. Padurariu, C., Breaban, M.E.: Dealing with data imbalance in text classification. Proc. Comput. Sci. 159, 736–745 (2019)

    Article  Google Scholar 

  40. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  41. Patsakis, C., Casino, F., Katos, V.: Encrypted and covert DNS queries for botnets: challenges and countermeasures. Comput. Secur. 88, 101614 (2020)

    Google Scholar 

  42. Bushart, J., Rossow, C.: Padding ain’t enough: assessing the privacy guarantees of encrypted DNS. In: 10th USENIX Workshop FOCI (2020)

    Google Scholar 

  43. Siby, S., Juarez, M., Diaz, C., Vallina-Rodriguez, N., Troncoso, C.: Encrypted DNS privacy. In: NDSS (2020)

    Google Scholar 

Download references

Acknowledgement

This work is supported by National NSF of China (No. 61802312), Natural Science Basic Research Plan in Shaanxi Province of China (No. 2019JQ-618), and open fund of Integrated Aero-Space-Ground-Ocean Big Data Application Technology (No. 20200105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danghui Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saeed, A.M.H., Wang, D., Alnedhari, H.A.M., Mei, K., Wang, J. (2022). A Survey of Machine Learning and Deep Learning Based DGA Detection Techniques. In: Qiu, M., Gai, K., Qiu, H. (eds) Smart Computing and Communication. SmartCom 2021. Lecture Notes in Computer Science, vol 13202. Springer, Cham. https://doi.org/10.1007/978-3-030-97774-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97774-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97773-3

  • Online ISBN: 978-3-030-97774-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics