[go: up one dir, main page]

Skip to main content

Embedded Face Recognition for Personalized Services in the Assistive Robotics

  • Conference paper
  • First Online:
Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2021)

Abstract

Recently, the field of assistive robotics has drawn much attention in the health care sector. In combination with modern machine learning-supported person recognition systems, they can deliver highly personalized services. However, common algorithms for person recognition such as convolutional neural networks (CNNs) consume high amounts of power and show low energy efficiency when executed on general-purpose computing platforms.

In this paper, we present our hardware architecture and field programmable gate array (FPGA) accelerator to enable on-device person recognition in the context of assistive robotics. Therefore, we optimize a neural network based on the SqueezeNet topology and implement it on an FPGA for a high degree of flexibility and reconfigurability. By pruning redundant filters and quantization of weights and activations, we are able to find a well-fitting neural network that achieves a high identification accuracy of 84%. On a Xilinx Zynq Ultra96v2, we achieve a power consumption of 4.8 W, a latency of 31 ms and an efficiency of 6.738 FPS/W. Our results outperform the latency by 1.6x compared to recent person recognition systems in assistive robots and energy efficiency by 1.7x for embedded face recognition, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Asfour, T., et al.: ARMAR-6: a high-performance humanoid for human-robot collaboration in real-world scenarios. IEEE Robot. Autom. Mag. 26, 108–121 (2019)

    Article  Google Scholar 

  2. Baehr, S., et al.: Low latency neural networks using heterogenous resources on FPGA for the Belle II trigger. CoRR abs/1910.13679 (2019)

    Google Scholar 

  3. Brinker, T.J., et al.: Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task. Eur. J. Cancer 113, 47–54 (2019)

    Article  Google Scholar 

  4. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition (2009)

    Google Scholar 

  5. Duque-Domingo, J., Gómez-García-Bermejo, J., Zalama, E.: Gaze control of a robotic head for realistic interaction with humans. Front. Neurorobot. 14, 34 (2020)

    Article  Google Scholar 

  6. Esler, T.: Face recognition using PyTorch. https://github.com/timesler/facenet-pytorch. Accessed 06 July 2021

  7. Ghiţă, ŞA., Barbu, M.Ş, Gavril, A., Trăscău, M., Sorici, A., Florea, A.M.: User detection, tracking and recognition in robot assistive care scenarios. In: Giuliani, M., Assaf, T., Giannaccini, M.E. (eds.) TAROS 2018. LNCS (LNAI), vol. 10965, pp. 271–283. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96728-8_23

    Chapter  Google Scholar 

  8. Han, S., Pool, J., Tran, J., Dally, W.J.: Learning both weights and connections for efficient neural networks. CoRR abs/1506.02626 (2015)

    Google Scholar 

  9. Hotfilter, T., Kempf, F., Becker, J., Reinhardt, D., Baili, I.: Embedded image processing the European way: a new platform for the future automotive market. In: World Forum on Internet of Things, pp. 1–6 (2020)

    Google Scholar 

  10. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. CoRR abs/1704.04861 (2017)

    Google Scholar 

  11. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Quantized neural networks: training neural networks with low precision weights and activations. CoRR abs/1609.07061 (2016)

    Google Scholar 

  12. Iandola, F.N.: Github forresti/squeezenet/squeezenet_v1.1/ (2016). https://github.com/forresti/SqueezeNet/tree/master/SqueezeNet_v1.1. Accessed 01 Feb 2021

  13. Iandola, F.N., Moskewicz, M.W., Ashraf, K., Han, S., Dally, W.J., Keutzer, K.: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and \(<\) 1MB model size. CoRR abs/1602.07360 (2016)

    Google Scholar 

  14. Jacob, B., et al.: Quantization and training of neural networks for efficient integer-arithmetic-only inference. In: IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  15. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc. (2012)

    Google Scholar 

  16. Labs, X.R.: FINN HLS library. https://github.com/Xilinx/finn-hlslib. Accessed 22 Feb 2021

  17. Liu, X., et al.: Collaborative edge computing with FPGA-based CNN accelerators for energy-efficient and time-aware face tracking system. IEEE Trans. Comput. Soc. Syst., 1–15 (2021). https://ieeexplore.ieee.org/document/9363321

  18. Liu, Y., Li, H., Wang, X.: Rethinking feature discrimination and polymerization for large-scale recognition. CoRR abs/1710.00870 (2017)

    Google Scholar 

  19. Liu, Z., Sun, M., Zhou, T., Huang, G., Darrell, T.: Rethinking the value of network pruning. In: International Conference on Learning Representations (2018)

    Google Scholar 

  20. Matarić, M.J., Scassellati, B.: Socially assistive robotics. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 1973–1994. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32552-1_73

    Chapter  Google Scholar 

  21. Ranjan, R., Castillo, C.D., Chellappa, R.: L2-constrained softmax loss for discriminative face verification. CoRR abs/1703.09507 (2017)

    Google Scholar 

  22. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: IEEE Conference on Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  23. Sirovich, L., Kirby, M.: Low-dimensional procedure for the characterization of human faces. J. Opt. Soc. Am. A 4(3), 519–524 (1987)

    Article  Google Scholar 

  24. Sun, Y., Wang, X., Tang, X.: Deep learning face representation from predicting 10,000 classes. In: IEEE Conference on Computer Vision and Pattern Recognition (2014)

    Google Scholar 

  25. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: DeepFace: closing the gap to human-level performance in face verification. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1701–1708 (2014)

    Google Scholar 

  26. Umuroglu, Y., et al.: FINN: a framework for fast, scalable binarized neural network inference. In: ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp. 65–74. ACM (2017)

    Google Scholar 

  27. Wang, M., Deng, W.: Deep face recognition: a survey. CoRR abs/1804.06655 (2018)

    Google Scholar 

  28. Yi, D., Lei, Z., Liao, S., Li, S.Z.: Learning face representation from scratch. CoRR abs/1411.7923 (2014)

    Google Scholar 

  29. Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 23(10), 1499–1503 (2016)

    Article  Google Scholar 

  30. Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. CoRR abs/1707.01083 (2017)

    Google Scholar 

  31. Zhou, H., Mian, A., Wei, L., Creighton, D., Hossny, M., Nahavandi, S.: Recent advances on singlemodal and multimodal face recognition: a survey. IEEE Trans. Hum.-Mach. Syst. 44(6), 701–716 (2014)

    Article  Google Scholar 

  32. Zhuge, C., Liu, X., Zhang, X., Gummadi, S., Xiong, J., Chen, D.: Face recognition with hybrid efficient convolution algorithms on FPGAs. CoRR abs/1803.09004 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iris Walter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Walter, I. et al. (2021). Embedded Face Recognition for Personalized Services in the Assistive Robotics. In: Kamp, M., et al. Machine Learning and Principles and Practice of Knowledge Discovery in Databases. ECML PKDD 2021. Communications in Computer and Information Science, vol 1524. Springer, Cham. https://doi.org/10.1007/978-3-030-93736-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93736-2_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93735-5

  • Online ISBN: 978-3-030-93736-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics