[go: up one dir, main page]

Skip to main content

Realistic Commodity Flow Networks to Assess Vulnerability of Food Systems

  • Conference paper
  • First Online:
Complex Networks & Their Applications X (COMPLEX NETWORKS 2021)

Abstract

As the complexity of our food systems increases, they also become susceptible to unanticipated natural and human-initiated events. Commodity trade networks are a critical component of our food systems in ensuring food availability. We develop a generic data-driven framework to construct realistic agricultural commodity trade networks. Our work is motivated by the need to study food flows in the context of biological invasions. These networks are derived by fusing gridded, administrative-level, and survey datasets on production, trade, and consumption. Further, they are periodic temporal networks reflecting seasonal variations in production and trade of the crop. We apply this approach to create networks of tomato flow for two regions – Senegal and Nepal. Using statistical methods and network analysis, we gain insights into spatiotemporal dynamics of production and trade. Our results suggest that agricultural systems are increasingly vulnerable to attacks through trade of commodities due to their vicinity to regions of high demand and seasonal variations in production and flows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barrett, C., et al.: Planning and response in the aftermath of a large crisis: an agent-based informatics framework. In: Proceedings of the 2013 Winter Simulation Conference, pp. 1515–1526 (2013). https://informs-sim.org/wsc13papers/includes/files/132.pdf

  2. Biondi, A., Guedes, R.N.C., Wan, F.H., Desneux, N.: Ecology, worldwide spread, and management of the invasive South American tomato pinworm, Tuta absoluta: past, present, and future. Annu. Rev. Entomol. 63, 239–258 (2018)

    Google Scholar 

  3. Breiman, L.: Classification and Regression Trees. Routledge, Milton Park (2017)

    Book  Google Scholar 

  4. Carrasco, L., et al.: Unveiling human-assisted dispersal mechanisms in invasive alien insects: integration of spatial stochastic simulation and phenology models. Ecol. Model. 221(17), 2068–2075 (2010)

    Article  Google Scholar 

  5. ComTrade: Import and export (2021). http://comtrade.un.org/db/

  6. Ercsey-Ravasz, M., Toroczkai, Z., Lakner, Z., Baranyi, J.: Complexity of the international agro-food trade network and its impact on food safety. PLoS ONE 7(5), e37810 (2012)

    Google Scholar 

  7. Eubank, S., et al.: Modelling disease outbreaks in realistic urban social networks. Nature 429(6988), 180–184 (2004)

    Google Scholar 

  8. FAO: Production and trade (2019). http://www.fao.org/faostat/en/#data

  9. Google: Distance Matrix API (2017). https://developers.google.com/maps/documentation/distance-matrix/

  10. Guimapi, R.Y., Mohamed, S.A., Okeyo, G.O., Ndjomatchoua, F.T., Ekesi, S., Tonnang, H.E.: Modeling the risk of invasion and spread of Tuta absoluta in Africa. Ecol. Complex. 28, 77–93 (2016)

    Google Scholar 

  11. Hulme, P.E.: Trade, transport and trouble: managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46(1), 10–18 (2009)

    Article  Google Scholar 

  12. Hwang, H.L., et al.: The freight analysis framework version 4 (FAF4)-building the FAF4 regional database: data sources and estimation methodologies. Technical report, Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) (2016)

    Google Scholar 

  13. Kaluza, P., Kölzsch, A., Gastner, M.T., Blasius, B.: The complex network of global cargo ship movements. J. R. Soc. Interface 7(48), 1093–1103 (2010)

    Article  Google Scholar 

  14. Manning, L., Baines, R.N., Chadd, S.A.: Deliberate contamination of the food supply chain. Br. Food J. 107(4), 225–245 (2005). https://doi.org/10.1108/00070700510589512

  15. McNitt, J., et al.: Assessing the multi-pathway threat from an invasive agricultural pest: Tuta absoluta in Asia. Proc. R. Soc. B 286(1913), 20191159 (2019)

    Google Scholar 

  16. Mistry, D., et al.: Inferring high-resolution human mixing patterns for disease modeling. Nat. Commun. 12(1), 323 (2021). https://doi.org/10.1038/s41467-020-20544-y

  17. Mohamed, I.A.: Cartographie des flux commerciaux de la tomate au Sénégal: reconstitution des filières, modélisation des flux et r\(\hat{0}\)le dans la propagation du ravageur Tuta absoluta (2017)

    Google Scholar 

  18. Nath, M., et al.: Using network reliability to understand international food trade dynamics. In: Aiello, L.M., Cherifi, C., Cherifi, H., Lambiotte, R., Lió, P., Rocha, L.M. (eds.) COMPLEX NETWORKS 2018. SCI, vol. 812, pp. 524–535. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05411-3_43

    Chapter  Google Scholar 

  19. Nopsa, J.F.H., et al.: Ecological networks in stored grain: key postharvest nodes for emerging pests, pathogens, and mycotoxins. BioScience 65(10), 985–1002 (2015)

    Google Scholar 

  20. Pimentel, D., Zuniga, R., Morrison, D.: Update on the environmental and economic costs associated with alien-invasive species in the united states. Ecol. Econ. 52(3), 273–288 (2005)

    Article  Google Scholar 

  21. Robinson, C., Shirazi, A., Liu, M., Dilkina, B.: Network optimization of food flows in the US. In: 2016 IEEE International Conference on Big Data (Big Data), pp. 2190–2198. IEEE (2016)

    Google Scholar 

  22. Rosenzweig, C., Iglesius, A., Yang, X.B., Epstein, P.R., Chivian, E.: Climate change and extreme weather events-implications for food production, plant diseases, and pests (2001)

    Google Scholar 

  23. Singh, S., Kumar, R., Panchal, R., Tiwari, M.K.: Impact of COVID-19 on logistics systems and disruptions in food supply chain. Int. J. Prod. Res. 59(7), 1993–2008 (2021)

    Article  Google Scholar 

  24. Suweis, S., Carr, J.A., Maritan, A., Rinaldo, A., D’Odorico, P.: Resilience and reactivity of global food security. Proc. Natl. Acad. Sci. 112(22), 6902–6907 (2015)

    Article  Google Scholar 

  25. USDA: Farms and Land in Farms 2017 Summary (2018). https://www.nass.usda.gov/Publications/Todays_Reports/reports/fnlo0218.pdf

  26. Venkatramanan, S., et al.: Modeling commodity flow in the context of invasive species spread: study of Tuta Absoluta in Nepal. Crop Prot. 135, 104736 (2020)

    Google Scholar 

  27. Voigt, A., et al.: Containing pandemics through targeted testing of households. BMC Infect. Dis. 21, 548 (2021). https://bmcinfectdis.biomedcentral.com/articles/10.1186/s12879-021-06256-8

  28. You, L., Wood-Sichra, U., Fritz, S., Guo, Z., See, L., Koo., J.: Spatial Production Allocation Model (SPAM) 2005 v3.2 (2017). http://mapspam.info

Download references

Acknowledgments

This work has been partially supported by USAID under the Cooperative Agreement No. AID-OAA-L-15-00001, USDA NIFA FACT 2019-67021-29933, DTRA (Contract HDTRA1-19-D-0007), University of Virginia Strategic Investment Fund award number SIF160, NSF grants IIS-1633028 (BIG DATA), CMMI-1745207 (EAGER), OAC-1916805 (CINES), CCF-1918656 (Expeditions), OAC-2027541 (RAPID) and IIS-1908530, The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright annotation thereon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijin Adiga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Adiga, A. et al. (2022). Realistic Commodity Flow Networks to Assess Vulnerability of Food Systems. In: Benito, R.M., Cherifi, C., Cherifi, H., Moro, E., Rocha, L.M., Sales-Pardo, M. (eds) Complex Networks & Their Applications X. COMPLEX NETWORKS 2021. Studies in Computational Intelligence, vol 1072. Springer, Cham. https://doi.org/10.1007/978-3-030-93409-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93409-5_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93408-8

  • Online ISBN: 978-3-030-93409-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics