[go: up one dir, main page]

Skip to main content

Spark Deficient Gabor Frame Provides A Novel Analysis Operator For Compressed Sensing

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1517))

Included in the following conference series:

Abstract

The analysis sparsity model is a very effective approach in modern Compressed Sensing applications. Specifically, redundant analysis operators can lead to fewer measurements needed for reconstruction when employing the analysis \(l_1\)-minimization in Compressed Sensing. In this paper, we pick an eigenvector of the Zauner unitary matrix and –under certain assumptions on the ambient dimension– we build a spark deficient Gabor frame. The analysis operator associated with such a frame, is a new (highly) redundant Gabor transform, which we use as a sparsifier in Compressed Sensing. We conduct computational experiments –on both synthetic and real-world data– solving the analysis \(l_1\)-minimization problem of Compressed Sensing, with four different choices of analysis operators, including our Gabor analysis operator. The results show that our proposed redundant Gabor transform outperforms –in all cases– Gabor transforms generated by state-of-the-art window vectors of time-frequency analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    in terms of optimization, it is preferred to solve (2) instead of (3).

  2. 2.

    \(bb^{-1}\equiv 1(\mathrm {mod}L)\).

References

  1. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theor. 52(2), 489–509 (2006)

    Article  MathSciNet  Google Scholar 

  2. Potter, L.C., Ertin, E., Parker, J.T., Cetin, M.: Sparsity and compressed sensing in radar imaging. Proc. IEEE 98(6), 1006–1020 (2010)

    Article  Google Scholar 

  3. Chen, J., Zhang, Y., Qi, L., Fu, C., Xu, L.: Exploiting chaos-based compressed sensing and cryptographic algorithm for image encryption and compression. Opt. Laser Technol. 99, 238–248 (2018)

    Article  Google Scholar 

  4. Alexandropoulos, G.C., Chouvardas, S.: Low complexity channel estimation for millimeter wave systems with hybrid A/D antenna processing. In: 2016 IEEE Globecom Workshops (GC Wkshps), pp. 1–6. IEEE (2016)

    Google Scholar 

  5. Pejoski, S., Kafedziski, V., Gleich, D.: Compressed sensing MRI using discrete nonseparable shearlet transform and FISTA. IEEE Sig. Process. Lett. 22(10), 1566–1570 (2015)

    Article  Google Scholar 

  6. Wu, Y., Rosca, M., Lillicrap, T.: Deep compressed sensing. In: International Conference on Machine Learning, pp. 6850–6860. PMLR (2019)

    Google Scholar 

  7. Foucart S., Rauhut H.: An invitation to compressive sensing. In: A Mathematical Introduction to Compressive Sensing. Applied and Numerical Harmonic Analysis. Birkhäuser, New York (2013)

    Google Scholar 

  8. Li, C., Adcock, B.: Compressed sensing with local structure: uniform recovery guarantees for the sparsity in levels class. Appl. Comput. Harmonic Anal. 46(3), 453–477 (2019)

    Article  MathSciNet  Google Scholar 

  9. Dao, P.T., Griffin, A., Li, X.J.: Compressed sensing of EEG with Gabor dictionary: Effect of time and frequency resolution. In: 2018 40th annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp. 3108–3111. IEEE (2018)

    Google Scholar 

  10. Genzel, M., Kutyniok, G., März, M.: \(l_1\)-Analysis minimization and generalized (co-) sparsity: when does recovery succeed? Appl. Comput. Harmonic Anal. 52, 82–140 (2021)

    Article  MathSciNet  Google Scholar 

  11. Kabanava, M., Rauhut, H.: Analysis \(l_1\)-recovery with frames and gaussian measurements. Acta Applicandae Mathematicae 140(1), 173–195 (2015)

    Article  MathSciNet  Google Scholar 

  12. Candes, E.J., Eldar, Y.C., Needell, D., Randall, P.: Compressed sensing with coherent and redundant dictionaries. Appl. Comput. Harmonic Anal. 31(1), 59–73 (2011)

    Article  MathSciNet  Google Scholar 

  13. Nam, S., Davies, M.E., Elad, M., Gribonval, R.: The cosparse analysis model and algorithms. Appl. Comput. Harmonic Anal. 34(1), 30–56 (2013)

    Article  MathSciNet  Google Scholar 

  14. Kabanava, M., Rauhut, H.: Cosparsity in compressed sensing. In: Boche, H., Calderbank, R., Kutyniok, G., Vybíral, J. (eds.) Compressed Sensing and its Applications. ANHA, pp. 315–339. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16042-9_11

    Chapter  MATH  Google Scholar 

  15. Krahmer, F., Kruschel, C., Sandbichler, M.: Total variation minimization in compressed sensing. In: Boche, H., Caire, G., Calderbank, R., März, M., Kutyniok, G., Mathar, R. (eds.) Compressed Sensing and its Applications. ANHA, pp. 333–358. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69802-1_11

    Chapter  Google Scholar 

  16. Blumensath, T., Davies, M.E.: Sampling theorems for signals from the union of finite-dimensional linear subspaces. IEEE Trans. Inf. Theor. 55(4), 1872–1882 (2009)

    Article  MathSciNet  Google Scholar 

  17. Zauner, G.: Quantum designs (Doctoral dissertation, University of Vienna, Vienna) (1999)

    Google Scholar 

  18. Pfander, G.E., Rauhut, H.: Sparsity in time-frequency representations. J. Fourier Anal. Appl. 16(2), 233–260 (2010)

    Article  MathSciNet  Google Scholar 

  19. Rajbamshi, S., Tauböck, G., Balazs, P., Abreu, L.D.: Random gabor multipliers for compressive sensing: a simulation study. In: 2019 27th European Signal Processing Conference (EUSIPCO), pp. 1–5. IEEE (2019)

    Google Scholar 

  20. Becker, S.R., Candès, E.J., Grant, M.C.: Templates for convex cone problems with applications to sparse signal recovery. Math. Program. Comput. 3(3), 165 (2011)

    Article  MathSciNet  Google Scholar 

  21. Søndergaard, P.L., Hansen, P.C., Christensen, O.: Finite discrete Gabor analysis (Doctoral dissertation, Institut for Matematik, DTU) (2007)

    Google Scholar 

  22. Dang, H.B., Blanchfield, K., Bengtsson, I., Appleby, D.M.: Linear dependencies in Weyl-Heisenberg orbits. Quantum Inf. Process. 12(11), 3449–3475 (2013)

    Article  MathSciNet  Google Scholar 

  23. Malikiosis, R.D.: A note on Gabor frames in finite dimensions. Appl. Comput. Harmonic Anal. 38(2), 318–330 (2015)

    Article  MathSciNet  Google Scholar 

  24. Malikiosis, R.D.: Spark deficient Gabor frames. Pacific J. Math. 294(1), 159–180 (2018)

    Article  MathSciNet  Google Scholar 

  25. Buckheit J.B., Donoho D.L.: WaveLab and reproducible research. In: Antoniadis A., Oppenheim G. (eds.) Wavelets and Statistics. Lecture Notes in Statistics, vol. 103. Springer, New York (1995)

    Google Scholar 

  26. Garofolo, J.S., Lamel, L.F., Fisher, W.M., Fiscus, J.G. and Pallett, D.S.: DARPA TIMIT acoustic-phonetic continous speech corpus CD-ROM. NIST speech disc 1–1.1. NASA STI/Recon technical report n, 93, p. 27403 (1993)

    Google Scholar 

  27. Booth, T.E.: Power iteration method for the several largest eigenvalues and eigenfunctions. Nuclear Sci. Eng. 154(1), 48–62 (2006)

    Article  Google Scholar 

  28. Pruša, Z., Søndergaard, P., Balazs, P., Holighaus, N.: LTFAT: A Matlab/Octave toolbox for sound processing. In: Proceedings 10th International Symposium on Computer Music Multidisciplinary Research (CMMR), pp. 299–314 (2013)

    Google Scholar 

  29. Yuan, M., Yang, B., Ma, Y., Zhang, J., Zhang, R., Zhang, C.: Compressed sensing MRI reconstruction from highly undersampled-space data using nonsubsampled shearlet transform sparsity prior. Mathematical Problems in Engineering 2015 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasiliki Kouni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kouni, V., Rauhut, H. (2021). Spark Deficient Gabor Frame Provides A Novel Analysis Operator For Compressed Sensing. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Communications in Computer and Information Science, vol 1517. Springer, Cham. https://doi.org/10.1007/978-3-030-92310-5_81

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92310-5_81

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92309-9

  • Online ISBN: 978-3-030-92310-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics