Abstract
The analysis sparsity model is a very effective approach in modern Compressed Sensing applications. Specifically, redundant analysis operators can lead to fewer measurements needed for reconstruction when employing the analysis \(l_1\)-minimization in Compressed Sensing. In this paper, we pick an eigenvector of the Zauner unitary matrix and –under certain assumptions on the ambient dimension– we build a spark deficient Gabor frame. The analysis operator associated with such a frame, is a new (highly) redundant Gabor transform, which we use as a sparsifier in Compressed Sensing. We conduct computational experiments –on both synthetic and real-world data– solving the analysis \(l_1\)-minimization problem of Compressed Sensing, with four different choices of analysis operators, including our Gabor analysis operator. The results show that our proposed redundant Gabor transform outperforms –in all cases– Gabor transforms generated by state-of-the-art window vectors of time-frequency analysis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theor. 52(2), 489–509 (2006)
Potter, L.C., Ertin, E., Parker, J.T., Cetin, M.: Sparsity and compressed sensing in radar imaging. Proc. IEEE 98(6), 1006–1020 (2010)
Chen, J., Zhang, Y., Qi, L., Fu, C., Xu, L.: Exploiting chaos-based compressed sensing and cryptographic algorithm for image encryption and compression. Opt. Laser Technol. 99, 238–248 (2018)
Alexandropoulos, G.C., Chouvardas, S.: Low complexity channel estimation for millimeter wave systems with hybrid A/D antenna processing. In: 2016 IEEE Globecom Workshops (GC Wkshps), pp. 1–6. IEEE (2016)
Pejoski, S., Kafedziski, V., Gleich, D.: Compressed sensing MRI using discrete nonseparable shearlet transform and FISTA. IEEE Sig. Process. Lett. 22(10), 1566–1570 (2015)
Wu, Y., Rosca, M., Lillicrap, T.: Deep compressed sensing. In: International Conference on Machine Learning, pp. 6850–6860. PMLR (2019)
Foucart S., Rauhut H.: An invitation to compressive sensing. In: A Mathematical Introduction to Compressive Sensing. Applied and Numerical Harmonic Analysis. Birkhäuser, New York (2013)
Li, C., Adcock, B.: Compressed sensing with local structure: uniform recovery guarantees for the sparsity in levels class. Appl. Comput. Harmonic Anal. 46(3), 453–477 (2019)
Dao, P.T., Griffin, A., Li, X.J.: Compressed sensing of EEG with Gabor dictionary: Effect of time and frequency resolution. In: 2018 40th annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp. 3108–3111. IEEE (2018)
Genzel, M., Kutyniok, G., März, M.: \(l_1\)-Analysis minimization and generalized (co-) sparsity: when does recovery succeed? Appl. Comput. Harmonic Anal. 52, 82–140 (2021)
Kabanava, M., Rauhut, H.: Analysis \(l_1\)-recovery with frames and gaussian measurements. Acta Applicandae Mathematicae 140(1), 173–195 (2015)
Candes, E.J., Eldar, Y.C., Needell, D., Randall, P.: Compressed sensing with coherent and redundant dictionaries. Appl. Comput. Harmonic Anal. 31(1), 59–73 (2011)
Nam, S., Davies, M.E., Elad, M., Gribonval, R.: The cosparse analysis model and algorithms. Appl. Comput. Harmonic Anal. 34(1), 30–56 (2013)
Kabanava, M., Rauhut, H.: Cosparsity in compressed sensing. In: Boche, H., Calderbank, R., Kutyniok, G., Vybíral, J. (eds.) Compressed Sensing and its Applications. ANHA, pp. 315–339. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16042-9_11
Krahmer, F., Kruschel, C., Sandbichler, M.: Total variation minimization in compressed sensing. In: Boche, H., Caire, G., Calderbank, R., März, M., Kutyniok, G., Mathar, R. (eds.) Compressed Sensing and its Applications. ANHA, pp. 333–358. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69802-1_11
Blumensath, T., Davies, M.E.: Sampling theorems for signals from the union of finite-dimensional linear subspaces. IEEE Trans. Inf. Theor. 55(4), 1872–1882 (2009)
Zauner, G.: Quantum designs (Doctoral dissertation, University of Vienna, Vienna) (1999)
Pfander, G.E., Rauhut, H.: Sparsity in time-frequency representations. J. Fourier Anal. Appl. 16(2), 233–260 (2010)
Rajbamshi, S., Tauböck, G., Balazs, P., Abreu, L.D.: Random gabor multipliers for compressive sensing: a simulation study. In: 2019 27th European Signal Processing Conference (EUSIPCO), pp. 1–5. IEEE (2019)
Becker, S.R., Candès, E.J., Grant, M.C.: Templates for convex cone problems with applications to sparse signal recovery. Math. Program. Comput. 3(3), 165 (2011)
Søndergaard, P.L., Hansen, P.C., Christensen, O.: Finite discrete Gabor analysis (Doctoral dissertation, Institut for Matematik, DTU) (2007)
Dang, H.B., Blanchfield, K., Bengtsson, I., Appleby, D.M.: Linear dependencies in Weyl-Heisenberg orbits. Quantum Inf. Process. 12(11), 3449–3475 (2013)
Malikiosis, R.D.: A note on Gabor frames in finite dimensions. Appl. Comput. Harmonic Anal. 38(2), 318–330 (2015)
Malikiosis, R.D.: Spark deficient Gabor frames. Pacific J. Math. 294(1), 159–180 (2018)
Buckheit J.B., Donoho D.L.: WaveLab and reproducible research. In: Antoniadis A., Oppenheim G. (eds.) Wavelets and Statistics. Lecture Notes in Statistics, vol. 103. Springer, New York (1995)
Garofolo, J.S., Lamel, L.F., Fisher, W.M., Fiscus, J.G. and Pallett, D.S.: DARPA TIMIT acoustic-phonetic continous speech corpus CD-ROM. NIST speech disc 1–1.1. NASA STI/Recon technical report n, 93, p. 27403 (1993)
Booth, T.E.: Power iteration method for the several largest eigenvalues and eigenfunctions. Nuclear Sci. Eng. 154(1), 48–62 (2006)
Pruša, Z., Søndergaard, P., Balazs, P., Holighaus, N.: LTFAT: A Matlab/Octave toolbox for sound processing. In: Proceedings 10th International Symposium on Computer Music Multidisciplinary Research (CMMR), pp. 299–314 (2013)
Yuan, M., Yang, B., Ma, Y., Zhang, J., Zhang, R., Zhang, C.: Compressed sensing MRI reconstruction from highly undersampled-space data using nonsubsampled shearlet transform sparsity prior. Mathematical Problems in Engineering 2015 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Kouni, V., Rauhut, H. (2021). Spark Deficient Gabor Frame Provides A Novel Analysis Operator For Compressed Sensing. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Communications in Computer and Information Science, vol 1517. Springer, Cham. https://doi.org/10.1007/978-3-030-92310-5_81
Download citation
DOI: https://doi.org/10.1007/978-3-030-92310-5_81
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-92309-9
Online ISBN: 978-3-030-92310-5
eBook Packages: Computer ScienceComputer Science (R0)