[go: up one dir, main page]

Skip to main content

Fast Approximate All Pairwise CoSimRanks via Random Projection

  • Conference paper
  • First Online:
Web Information Systems Engineering – WISE 2021 (WISE 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 13080))

Included in the following conference series:

Abstract

Given a graph G with n nodes, and two nodes \(u,v\in G\), the CoSimRank value s(uv) quantifies the similarity between u and v based on graph topology. Compared to SimRank, CoSimRank is shown to be more accurate and effective in many real-world applications including synonym expansion, lexicon extraction, and entity relatedness in knowledge graphs. The computation of all pairwise CoSimRanks in G is highly expensive and challenging. Existing solutions all focus on devising approximate algorithms for the computation of all pairwise CoSimRanks. To attain a desired absolute accuracy guarantee \(\epsilon \), the state-of-the-art approximate algorithm for computing all pairwise CoSimRanks requires \(O(n^3\log _2(\ln (\frac{1}{\epsilon })))\) time, which is prohibitively expensive even \(\epsilon \) is large. In this paper, we propose \(\mathtt {RPCS}\), a fast randomized algorithm for computing all pairwise CoSimRank values. The basic idea of \(\mathtt {RPCS}\) is to approximate the \(n\times n\) matrix multiplications in CoSimRank computation via random projection. Theoretically, \(\mathtt {RPCS}\) runs in \(O(\frac{n^2\ln (n)}{\epsilon ^2}\ln (\frac{1}{\epsilon }))\) time and meanwhile ensures an absolute error of at most \(\epsilon \) in each CoSimRank value in G with a high probability. Extensive experiments using six real graphs demonstrate that \(\mathtt {RPCS}\) is more than up to orders of magnitude faster than the state of the art. In particular, on a million-edge Twitter graph, \(\mathtt {RPCS}\) answers the \(\epsilon \)-approximate (\(\epsilon =0.1\)) all pairwise CoSimRank query within 4 h, using a single commodity server, while existing solutions fail to terminate within a day.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.cise.ufl.edu/research/sparse/matrices/SNAP/as-735.html.

  2. 2.

    http://snap.stanford.edu/data/ca-HepPh.html.

  3. 3.

    http://snap.stanford.edu/data/email-Enron.html.

  4. 4.

    http://snap.stanford.edu/data/ego-Facebook.html.

  5. 5.

    http://snap.stanford.edu/data/ego-Twitter.html.

  6. 6.

    http://snap.stanford.edu/data/ego-Gplus.html.

References

  1. Achlioptas, D.: Database-friendly random projections: johnson-lindenstrauss with binary coins. J. Comput. Syst. Sci., pp. 671–687 (2003)

    Google Scholar 

  2. Chen, L.: Johnson-lindenstrauss transformation and random projection (2015)

    Google Scholar 

  3. Dhulipala, L., Shi, J., Tseng, T., Blelloch, G.E., Shun, J.: The graph based benchmark suite (gbbs). In: Proceedings of the Joint International Workshop on Graph Data Management Experiences and Systems and Network Data Analytics, pp. 1–8 (2020)

    Google Scholar 

  4. Haveliwala, T.H.: Topic-sensitive pagerank: a context-sensitive ranking algorithm for web search. IEEE Trans. Knowl. Data Eng., pp. 784–796 (2003)

    Google Scholar 

  5. Hou, G., Chen, X., Wang, S., Wei, Z.: Massively parallel algorithms for personalized pagerank. Proc. VLDB Endow. 14(9), 1668–1680 (2021)

    Google Scholar 

  6. Munich, L.P.: For information of the university cistern (2013). cistern.cis.lmu.de

  7. Jeh, G., Widom, J.: Simrank: a measure of structural-context similarity. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 538–543 (2002)

    Google Scholar 

  8. Jeh, G., Widom, J.: Scaling personalized web search. In: Proceedings of the International Conference on World Wide Web, pp. 271–279 (2003)

    Google Scholar 

  9. Johnson, W.B., Lindenstrauss, J.: Extensions of lipschitz mappings into a hilbert space. Contemp. Math. 26(189–206), 1 (1984)

    Google Scholar 

  10. Kaban, A.: Improved bounds on the dot product under random projection and random sign projection. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 487–496 (2015)

    Google Scholar 

  11. Leskovec, J., Krevl, A.: SNAP Datasets: stanford large network dataset collection (2013). snap.stanford.edu/data

  12. Levitin, A.: Introduction to the design and analysis of algorithms. Pearson, Boston (2012)

    Google Scholar 

  13. Liao, X., Wu, Y., Cao, X.: Second-order cosimrank for similarity measures in social networks. In: IEEE International Conference on Communications, pp. 1–6 (2019)

    Google Scholar 

  14. Lin, W.: Distributed algorithms for fully personalized pagerank on large graphs. In: Proceedings of the International Conference on World Wide Web, pp. 1084–1094 (2019)

    Google Scholar 

  15. Matoušek, J.: On variants of the johnson-lindenstrauss lemma. Random Structures and Algorithms, pp. 142–156 (2008)

    Google Scholar 

  16. McAuley, J.J., Leskovec, J.: Learning to discover social circles in ego networks. In: Advances in Neural Information Processing Systems, pp. 548–56 (2012)

    Google Scholar 

  17. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: bringing order to the web. Tech. Rep., Stanford InfoLab (1999)

    Google Scholar 

  18. Ponza, M., Ferragina, P., Chakrabarti, S.: A two-stage framework for computing entity relatedness in wikipedia. In: Proceedings of the ACM International Conference on Information and Knowledge Management, pp. 1867–1876 (2017)

    Google Scholar 

  19. Rothe, S., Schütze, H.: Cosimrank: A flexible and efficient graph-theoretic similarity measure. In: Proceedings of the Annual Meeting of the Association for Computational Linguistics, pp. 1392–1402 (2014)

    Google Scholar 

  20. Shi, J., Jin, T., Yang, R., Xiao, X., Yang, Y.: Realtime index-free single source simrank processing on web-scale graphs. Proc. VLDB Endow. 13(7), 966–980 (2020)

    Google Scholar 

  21. Shi, J., Yang, R., Jin, T., Xiao, X., Yang, Y.: Realtime top-k personalized pagerank over large graphs on gpus. Proc. VLDB Endow., pp. 15–28 (2019)

    Google Scholar 

  22. Tian, B., Xiao, X.: Sling: A near-optimal index structure for simrank. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 1859–1874 (2016)

    Google Scholar 

  23. Venkatasubramanian, S., Wang, Q.: The johnson-lindenstrauss transform: an empirical study. In: Proceedings of the Thirteenth Workshop on Algorithm Engineering and Experiments, pp. 164–173 (2011)

    Google Scholar 

  24. Wang, H., Wei, Z., Yuan, Y., Du, X., Wen, J.R.: Exact single-source simrank computation on large graphs. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 653–663 (2020)

    Google Scholar 

  25. Wang, S., et al.: Efficient algorithms for approximate single-source personalized pagerank queries. ACM Trans. Database Syst., pp. 1–37 (2019)

    Google Scholar 

  26. Wang, S., Yang, R., Xiao, X., Wei, Z., Yang, Y.: Fora: simple and effective approximate single-source personalized pagerank. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 505–514 (2017)

    Google Scholar 

  27. Wang, Y., et al.: Disk: a distributed framework for single-source simrank with accuracy guarantee. Proc. VLDB Endow. 14(3), 351–363 (2020)

    Google Scholar 

  28. Wei, Z., et al.: Prsim: Sublinear time simrank computation on large power-law graphs. In: Proceedings of the ACM SIGMOD International Conference on Management of Data. pp. 1042–1059 (2019)

    Google Scholar 

  29. Wu, H., Gan, J., Wei, Z., Zhang, R.: Unifying the global and local approaches: an efficient power iteration with forward push. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 1996–2008 (2021)

    Google Scholar 

  30. Yang, R., Shi, J., Xiao, X., Yang, Y., Bhowmick, S.S.: Homogeneous network embedding for massive graphs via reweighted personalized pagerank. Proc. VLDB Endow. 13(5), 670–683 (2020)

    Google Scholar 

  31. Yu, W., McCann, J.: Co-simmate: Quick retrieving all pairwise co-simrank scores. In: Proceedings of the Annual Meeting of the Association for Computational Linguistics. pp. 327–333 (2015)

    Google Scholar 

  32. Yu, W., Wang, F.: Fast exact cosimrank search on evolving and static graphs. In: Proceedings of the International Conference on World Wide Web, pp. 599–608 (2018)

    Google Scholar 

  33. Zeng, W., Tang, J., Zhao, X.: Measuring entity relatedness via entity and text joint embedding. Neural Process. Lett., pp. 1861–1875 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renchi Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, R., Xiao, X. (2021). Fast Approximate All Pairwise CoSimRanks via Random Projection. In: Zhang, W., Zou, L., Maamar, Z., Chen, L. (eds) Web Information Systems Engineering – WISE 2021. WISE 2021. Lecture Notes in Computer Science(), vol 13080. Springer, Cham. https://doi.org/10.1007/978-3-030-90888-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90888-1_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90887-4

  • Online ISBN: 978-3-030-90888-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics