[go: up one dir, main page]

Skip to main content

Personalization and Localization to Improve Social Robots’ Behaviors: A Literature Review

  • Conference paper
  • First Online:
Social Robotics (ICSR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13086))

Included in the following conference series:

  • 3009 Accesses

Abstract

Personalization and localization are essential when developing social robots for different sectors, including education, industry, healthcare or restaurants. This requires adjusting the robot's behavior to an individual's needs, preferences, or personality when referring to personalization or the social convention or country's culture when referring to localization. Current literature presents different models that enable personalization and localization, each with its advantages and drawbacks. This work aims to help researchers in social robotics by reviewing and analyzing different papers in this domain. We focus our review on exploring various technical methods used to make decisions and adapt social robots’ non-verbal and verbal skills, including the state-of-the-art techniques in the sector of artificial intelligence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gasteiger, N., Hellou, M., Ahn, H.: Factors for personalization and localization to optimize human-robot interaction: a literature review. Int. J. Soc. Robot. (2021). https://doi.org/10.1007/s12369-021-00811-8

  2. Pieskä, S., Luimula, M., Jauhiainen, J., et al.: Social service robots in public and private environments. Circ. Syst. Multi. Autom. Control, 190–95 (2012)

    Google Scholar 

  3. Huang, C-M., Mutlu, B.: Robot behavior toolkit: generating effective social behaviors for robots. In: ACM/IEEE international conference on Human-Robot Interaction, pp. 25–32 (2012)

    Google Scholar 

  4. Kanda, T., Shiomi, M., Miyashita, Z., et al.: A communication robot in a shopping mall. IEEE Trans. Rob. 26(5), 897–913 (2010)

    Article  Google Scholar 

  5. McColl, D., Nejat, G.: Meal-time with a socially assistive robot and older adults at a long-term care facility. J. Hum.-Robot. Interact. 2(1), 152–171 (2013)

    Google Scholar 

  6. Aly, A., Tapus, A.: A model for synthesizing a combined verbal and nonverbal behavior based on personality traits in human-robot interaction. In: 2013 8th ACM/IEEE International Conference on Human-Robot Interaction (HRI). Tokyo, Japan: IEEE (2013)

    Google Scholar 

  7. Keizer, S., Foster, M., Wang, Z., et al.: Machine learning for social multiparty human–robot interaction. ACM Trans. Interact. Intell. Syst. 4(3), 1–32 (2014)

    Google Scholar 

  8. Liu, P., Glas, D.F., Kanda, T., Ishiguro, H.: Learning proactive behavior for interactive social robots. Auton. Robot. 42(5), 1067–1085 (2017). https://doi.org/10.1007/s10514-017-9671-8

    Article  Google Scholar 

  9. Qureshi, A., Nakamura, Y., Yoshikawa, Y., et al.: Robot gains social intelligence through multimodal deep reinforcement learning. arxiv 2017

    Google Scholar 

  10. Portugal, D., Santos, L., Alvito, P., et al.: SocialRobot: an interactive mobile robot for elderly home care. In: IEEE/SICE International Symposium on System Integration (2015)

    Google Scholar 

  11. Foster, M., Craenen, B., Deshmukh, A., et al.: MuMMER: Socially Intelligent Human-Robot Interaction in Public Spaces. arXiv.org (2019)

    Google Scholar 

  12. Puterman, M.: Markov Decision Processes: Discrete Stochastic Dynamic Programming, 1st edn. John Wiley & Sons Inc, USA (1994)

    Book  Google Scholar 

  13. Sekman, A., Challa, B.: Assessment of adaptive human–robot interactions. Knowl.-Based Syst. 42, 49–59 (2012)

    Article  Google Scholar 

  14. Ekman, P., Friesen, W., O’Sullivan, M., et al.: Universals and cultural differences in the judgments of facial expressions of emotion. J. Pers. Soc. Psychol. 53(4), 712–717 (1987)

    Article  Google Scholar 

  15. Craenen, B., Deshmukh, A., Foster, M., et al.: Shaping gestures to shape personalities: the relationship between gesture parameters, attributed personality traits and godspeed scores. In: 27th IEEE International Conference on Robot and Human Interactive Communication. IEEE, Nanjing, China (2018)

    Google Scholar 

  16. Cassell, J., Vilhjálmsson, H., Bickmore, T.: BEAT: the behavior expression animation toolkit. In: Prendinger, H., Ishizuka, M., eds. Life-Like Characters. Cognitive Technologies. Berlin, Heidelberg, Springer (2004). https://doi.org/10.1007/978-3-662-08373-4_8

  17. Yoon, Y., Ko, W-R., Jang, M., et al.: Robots Learn Social Skills: End-to-End Learning of Co-Speech Gesture Generation for Humanoid Robots. arXiv (2018)

    Google Scholar 

  18. The snackbot: documenting the design of a robot for long-term human-robot interaction. In: ACM/IEEE International Conference on Human-Robot Interaction (2009)

    Google Scholar 

  19. Churamani, N., Anton, P., Brügger, M., et al.: The impact of personalisation on human-robot interaction in learning scenarios. In: 5th International Conference on Human Agent Interaction HAI 2017. ACM, Bielefeld, Germany, pp. 171–80 (2017)

    Google Scholar 

  20. Torrey, C., Powers, A., Marge, M., et al.: Effects of adaptive robot dialogue on information exchange and social relations. In: 1st ACM SIGCHI/SIGART Conference on Human-Robot Interaction. Salt Lake City, Utah, USA, pp. 126–33 (2006)

    Google Scholar 

  21. Mairesse, F., Walker, M.: Controlling user perceptions of linguistic style: trainable generation of personality traits. Comput. Linguist. 37(3), 455–488 (2011)

    Article  Google Scholar 

  22. Perera, V., Pereira, T., Connell, J., et al.: Setting up Pepper for autonomous navigation and personalized interaction with users. arXiv 2017

    Google Scholar 

Download references

Acknowledgment

The project was supported by the Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIP) (No. 2020–0-00842, Development of Cloud Robot Intelligence for Continual Adaptation to User Reactions in Real Service Environments).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho Seok Ahn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hellou, M., Gasteiger, N., Ahn, H.S. (2021). Personalization and Localization to Improve Social Robots’ Behaviors: A Literature Review. In: Li, H., et al. Social Robotics. ICSR 2021. Lecture Notes in Computer Science(), vol 13086. Springer, Cham. https://doi.org/10.1007/978-3-030-90525-5_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90525-5_68

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90524-8

  • Online ISBN: 978-3-030-90525-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics