Abstract
The manual disc cutter changing of the shield machine has greater security hidden danger, which leads to the urgent need to develop a disc cutter changing robot to replace the over-worn disc cutters. The rotation positioning error of the large diameter cutter head, the motion control error of the disc cutter changing robot, and the complexity of the disc cutter changing bin environment lead to the inaccuracy of the actual pose of the disc cutter. Therefore, it is necessary to increase the machine vision measurement system to accurately measure the pose of the disc cutter or its holder. This paper proposes a cutter holder positioning method, which uses the parallel line features and actual contour area of the cutter holder to determine its initial pose, and then uses the initial pose to calculates its accurate pose based on the distance matching method. The innovation of the method is that the pose measurement is carried out through the unique characteristics of the cutter holder, and it combines the initial pose estimation method based on the geometric characteristics of the cutter holder with the distance matching method which depends on the initial pose to solve the cutter holder pose. Simulation analysis shows that the accuracy of the proposed method is close to that of the most advanced PnP algorithms, and its robustness is better than others. Experimental results also verify the high accuracy of the proposed method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Frenzel, C., Käsling, H., Thuro, K.: F: factors influencing disc cutter wear. Geomechan. Tunnelb. 1(1), 55–60 (2008)
Yuan, J., Guan, R., Du, J.F.: Design and implementation of disc cutter changing robot for tunnel boring machine (TBM). In: 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 2402–2407. IEEE, Dali (2019)
Liu, Z., Liu, X., Duan, G., et al.: F: Precise pose and radius estimation of circular target based on binocular vision. Measur. Sci. Technol. 30(2), 025006 (2019). (14pp). IOP, Kissimmee
Gadwe, A., Ren, H.: F: real-time 6DOF pose estimation of endoscopic instruments using printable markers. IEEE Sens. J. 19(6), 2338–2346 (2018)
Abdel-Aziz, Y., Karara, H.F.: Direct linear transformation from comparator coordinates into object space in close-range photogrammetry. Am. Soc. Photogram. (1971)
Lepetit, V., Moreno-Noguer, F., Fua, P.: F: EPnP: an accurate O(n) solution to the PnP problem. Int. J. Comput. Vision 81(2), 155–166 (2009)
Li, S., Xu, C., Xie, M.: F: a robust O(n) solution to the perspective-n-point problem. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1444–1450 (2012)
Zheng, Y., Kuang, Y., Sugimoto, S., et al.: F: revisiting the PnP problem: a fast, general and optimal solution. In: 2013 IEEE International Conference on Computer Vision, pp. 2344–2351. IEEE, Sydney (2014)
Zheng, Y., Sugimoto, S., Okutomi, M.: F: ASPnP: an accurate and scalable solution to the perspective-n-point problem. IEICE Trans. Inf. Syst. E96D(7), 1525–1535 (2013)
Zhang, Z.: F: a flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)
Acknowledgments
This work was supported by the National Key Research and Development Program of China (Grant No. 2018YFB1306700).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Peng, D., Zhu, G., Xie, Z., Liu, R., Zhang, D. (2021). An Improved Monocular-Vision-Based Method for the Pose Measurement of the Disc Cutter Holder of Shield Machine. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13014. Springer, Cham. https://doi.org/10.1007/978-3-030-89098-8_64
Download citation
DOI: https://doi.org/10.1007/978-3-030-89098-8_64
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-89097-1
Online ISBN: 978-3-030-89098-8
eBook Packages: Computer ScienceComputer Science (R0)