[go: up one dir, main page]

Skip to main content

Adaptive Transformer for Multilingual Neural Machine Translation

  • Conference paper
  • First Online:
Natural Language Processing and Chinese Computing (NLPCC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13028))

  • 2856 Accesses

Abstract

Multilingual neural machine translation (MNMT) with a single encoder-decoder model has attracted much interest due to its simple deployment and low training cost. However, the all-shared translation model often yields degraded performance due to the modeling capacity limitations and language diversity. Moreover, it has been revealed in recent studies that the shared parameters lead to negative language interference although they may also facilitate knowledge transfer across languages. In this work, we propose an adaptive architecture for multilingual modeling, which divides the parameters in MNMT sub-layers into shared and language-specific ones. We train the model to learn and balance the shared and unique features with different degrees of parameter sharing. We evaluate our model on one-to-many and many-to-one translation tasks. Experiments on IWSLT dataset show that our proposed model remarkably outperforms the multilingual baseline model and achieves comparable or even better performance compared with the bilingual model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://wit3.fbk.eu/.

  2. 2.

    https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/token-izer.perl.

  3. 3.

    Signature: BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a+version.1.4.14.

References

  1. Aharoni, R., Johnson, M., Firat, O.: Massively multilingual neural machine translation. In: ACL 2019 (2019)

    Google Scholar 

  2. Arivazhagan, N., et al.: Massively multilingual neural machine translation in the wild: findings and challenges. arXiv preprint arXiv:1907.05019 (2019)

  3. Bapna, A., Firat, O.: Simple, scalable adaptation for neural machine translation. In: EMNLP-IJCNLP 2019 (2019)

    Google Scholar 

  4. Blackwood, G., Ballesteros, M., Ward, T.: Multilingual neural machine translation with task-specific attention. In: COLING 2018 (2018)

    Google Scholar 

  5. Conneau, A., et al.: Unsupervised cross-lingual representation learning at scale. In: ACL 2020 (2020)

    Google Scholar 

  6. Dabre, R., Chu, C., Kunchukuttan, A.: A survey of multilingual neural machine translation. ACM Comput. Surv. (CSUR) 53(5), 1–38 (2020)

    Article  Google Scholar 

  7. Dong, D., Wu, H., He, W., Yu, D., Wang, H.: Multi-task learning for multiple language translation. In: ACL-IJCNLP 2015 (2015)

    Google Scholar 

  8. Firat, O., Cho, K., Bengio, Y.: Multi-way, multilingual neural machine translation with a shared attention mechanism. In: NAACL 2016 (2016)

    Google Scholar 

  9. Firat, O., Sankaran, B., Al-onaizan, Y., Yarman Vural, F.T., Cho, K.: Zero-resource translation with multi-lingual neural machine translation. In: EMNLP 2016 (2016)

    Google Scholar 

  10. Ha, T.L., Niehues, J., Waibel, A.: Toward multilingual neural machine translation with universal encoder and decoder. In: Proceedings of IWSLT 2016 (2016)

    Google Scholar 

  11. Johnson, M., et al.: Google’s multilingual neural machine translation system: enabling zero-shot translation. Trans. Assoc. Comput. Linguist. 5, 339–351 (2017)

    Article  Google Scholar 

  12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  13. Lu, Y., Keung, P., Ladhak, F., Bhardwaj, V., Zhang, S., Sun, J.: A neural interlingua for multilingual machine translation. In: Proceedings of the Third Conference on Machine Translation: Research Papers (2018). https://doi.org/10.18653/v1/W18-6309

  14. Michel, P., Levy, O., Neubig, G.: Are sixteen heads really better than one? arXiv preprint arXiv:1905.10650 (2019)

  15. Post, M.: A call for clarity in reporting BLEU scores. In: Proceedings of the Third Conference on Machine Translation: Research Papers (2018). https://doi.org/10.18653/v1/W18-6319

  16. Sachan, D., Neubig, G.: Parameter sharing methods for multilingual self-attentional translation models. In: Proceedings of the Third Conference on Machine Translation: Research Papers (2018). https://doi.org/10.18653/v1/W18-6327

  17. Sennrich, R., Haddow, B., Birch, A.: Neural machine translation of rare words with subword units. In: ACL 2016 (2016)

    Google Scholar 

  18. Tan, X., Chen, J., He, D., Xia, Y., Qin, T., Liu, T.Y.: Multilingual neural machine translation with language clustering. In: EMNLP-IJCNLP 2019 (2019)

    Google Scholar 

  19. Vaswani, A., et al.: Attention is all you need. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 6000–6010 (2017)

    Google Scholar 

  20. Vázquez, R., Raganato, A., Tiedemann, J., Creutz, M.: Multilingual NMT with a language-independent attention bridge. In: Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019) (2019)

    Google Scholar 

  21. Wang, Y., Zhang, J., Zhai, F., Xu, J., Zong, C.: Three strategies to improve one-to-many multilingual translation. In: EMNLP 2018 (2018)

    Google Scholar 

  22. Wang, Y., Zhou, L., Zhang, J., Zhai, F., Xu, J., Zong, C.: A compact and language-sensitive multilingual translation method. In: ACL 2019 (2019)

    Google Scholar 

  23. Wang, Z., Lipton, Z.C., Tsvetkov, Y.: On negative interference in multilingual models: findings and a meta-learning treatment. In: EMNLP 2020 (2020)

    Google Scholar 

  24. Zhang, B., Bapna, A., Sennrich, R., Firat, O.: Share or not? Learning to schedule language-specific capacity for multilingual translation. In: ICLR 2021 (2021)

    Google Scholar 

  25. Zhang, B., Williams, P., Titov, I., Sennrich, R.: Improving massively multilingual neural machine translation and zero-shot translation. In: ACL 2020 (2020)

    Google Scholar 

  26. Zoph, B., Knight, K.: Multi-source neural translation. In: NAACL 2016 (2016)

    Google Scholar 

  27. Zoph, B., Yuret, D., May, J., Knight, K.: Transfer learning for low-resource neural machine translation. In: EMNLP 2016 (2016)

    Google Scholar 

Download references

Acknowledgments

The research work has been supported by the National Key Research and Development Program of China No. 2020AAA0108004 and the Natural Science Foundation of China under Grant No. U1936109.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Degen Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, J., Huang, K., Li, J., Liu, H., Huang, D. (2021). Adaptive Transformer for Multilingual Neural Machine Translation. In: Wang, L., Feng, Y., Hong, Y., He, R. (eds) Natural Language Processing and Chinese Computing. NLPCC 2021. Lecture Notes in Computer Science(), vol 13028. Springer, Cham. https://doi.org/10.1007/978-3-030-88480-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88480-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88479-6

  • Online ISBN: 978-3-030-88480-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics